Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology, Physiological Reviews | DeepDyve (2024)

  • Getting ready for building: signaling and autophagosome biogenesis

    Abada, A; Elazar, Z

  • Identification and characterization of a functional mitochondrial angiotensin system

    Abadir, PM; Foster, DB; Crow, M; Cooke, CA; Rucker, JJ; Jain, A; Smith, BJ; Burks, TN; Cohn, RD; Fedarko, NS; Carey, RM; O’Rourke, B; Walston, JD

  • Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways

    Abbas, M; Jesel, L; Auger, C; Amoura, L; Messas, N; Manin, G; Rumig, C; León-González, AJ; Ribeiro, TP; Silva, GC; Abou-Merhi, R; Hamade, E; Hecker, M; Georg, Y; Chakfe, N; Ohlmann, P; Schini-Kerth, VB; Toti, F; Morel, O

  • The angiotensin II AT2 receptor is an AT1 receptor antagonist

    AbdAlla, S; Lother, H; Abdel-tawab, AM; Quitterer, U

  • AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration

    AbdAlla, S; Lother, H; Quitterer, U

  • β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility

    Abraham, DM; Davis, RT; Warren, CM; Mao, L; Wolska, BM; Solaro, RJ; Rockman, HA

  • Renin receptor expression in human adipose tissue

    Achard, V; Boullu-Ciocca, S; Desbriere, R; Nguyen, G; Grino, M

  • Expression and nutritional regulation of the (pro)renin receptor in rat visceral adipose tissue

    Achard, V; Tassistro, V; Boullu-Ciocca, S; Grino, M

  • Role of Rac1 GTPase activation in atrial fibrillation

    Adam, O; Frost, G; Custodis, F; Sussman, MA; Schäfers, HJ; Böhm, M; Laufs, U

  • Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation

    Adam, O; Lavall, D; Theobald, K; Hohl, M; Grube, M; Ameling, S; Sussman, MA; Rosenkranz, S; Kroemer, HK; Schäfers, H-J; Böhm, M; Laufs, U

  • ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy

    Adiarto, S; Heiden, S; Vignon-Zellweger, N; Nakayama, K; Yagi, K; Yanagisawa, M; Emoto, N

  • The (Pro)renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney

    Advani, A; Kelly, DJ; Cox, AJ; White, KE; Advani, SL; Thai, K; Connelly, KA; Yuen, D; Trogadis, J; Herzenberg, AM; Kuliszewski, MA; Leong-Poi, H; Gilbert, RE

  • Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism

    Agbor, LN; Ibeawuchi, SC; Hu, C; Wu, J; Davis, DR; Keen, HL; Quelle, FW; Sigmund, CD

  • Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes

    Ago, T; Kuroda, J; Pain, J; Fu, C; Li, H; Sadoshima, J

  • Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate

    Ahmad, S; Varagic, J; Groban, L; Dell’Italia, LJ; Nagata, S; Kon, ND; Ferrario, CM

  • Chymase mediates angiotensin-(1-12) metabolism in normal human hearts

    Ahmad, S; Wei, CC; Tallaj, J; Dell’Italia, LJ; Moniwa, N; Varagic, J; Ferrario, CM

  • Angiotensin-converting enzyme gene polymorphism in overweight and obese Turkish patients with insulin resistance

    Akin, F; Turgut, S; Bastemir, M; Turgut, G; Kursunluoglu, R; Karasu, U; Guclu, A

  • Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype

    Al Ghouleh, I; Meijles, DN; Mutchler, S; Zhang, Q; Sahoo, S; Gorelova, A; Henrich Amaral, J; Rodríguez, AI; Mamonova, T; Song, GJ; Bisello, A; Friedman, PA; Cifuentes-Pagano, ME; Pagano, PJ

  • Heme oxygenase-1 expression is down-regulated by angiotensin II and under hypertension in human neutrophils

    Alba, G; El Bekay, R; Chacón, P; Reyes, ME; Ramos, E; Oliván, J; Jiménez, J; López, JM; Martín-Nieto, J; Pintado, E; Sobrino, F

  • Bcr kinase activation by angiotensin II inhibits PPARγ transcriptional activity in vascular smooth muscle cells

    Alexis, JD; Wang, N; Che, W; Lerner-Marmarosh, N; Sahni, A; Korshunov, VA; Zou, Y; Ding, B; Yan, C; Berk, BC; Abe, J-i

  • Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor

    Ali, MS; Sayeski, PP; Dirksen, LB; Hayzer, DJ; Marrero, MB; Bernstein, KE

  • Angiotensin type 2 receptor null mice express reduced levels of renal angiotensin II type 2 receptor/angiotensin (1-7)/Mas receptor and exhibit greater high-fat diet-induced kidney injury

    Ali, Q; Dhande, I; Samuel, P; Hussain, T

  • Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation

    Alique, M; Civantos, E; Sanchez-Lopez, E; Lavoz, C; Rayego-Mateos, S; Rodrigues-Díez, R; García-Redondo, AB; Egido, J; Ortiz, A; Rodríguez-Puyol, D; Rodríguez-Puyol, M; Ruiz-Ortega, M

  • Distribution of cells expressing human renin-promoter activity in the brain of a transgenic mouse

    Allen, AM; O’Callaghan, EL; Hazelwood, L; Germain, S; Castrop, H; Schnermann, J; Bassi, JK

  • Localization and function of angiotensin AT1 receptors

    Allen, AM; Zhuo, J; Mendelsohn, FA

  • Estradiol and angiotensin II crosstalk in hydromineral balance: Role of the ERK1/2 and JNK signaling pathways

    Almeida-Pereira, G; Coletti, R; Mecawi, AS; Reis, LC; Elias, LLK; Antunes-Rodrigues, J

  • Deleting Vascular ADAM17 Sheds New Light on Hypertensive Cardiac Hypertrophy

    Altara, R; Booz, GW

  • Cardiac STAT3 Deficiency Impairs Contractility and Metabolic Homeostasis in Hypertension

    Altara, R; Harmancey, R; Didion, SP; Booz, GW; Zouein, FA

  • The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Altenhöfer, S; Kleikers, PW; Radermacher, KA; Scheurer, P; Rob Hermans, JJ; Schiffers, P; Ho, H; Wingler, K; Schmidt, HH

  • Angiotensin II impairs endothelial nitric-oxide synthase bioavailability under free cholesterol-enriched conditions via intracellular free cholesterol-rich membrane microdomains

    Amiya, E; Watanabe, M; Takeda, N; Saito, T; Shiga, T; Hosoya, Y; Nakao, T; Imai, Y; Manabe, I; Nagai, R; Komuro, I; Maemura, K

  • Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells

    Andreozzi, F; Laratta, E; Sciacqua, A; Perticone, F; Sesti, G

  • TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms

    Angelov, SN; Hu, JH; Wei, H; Airhart, N; Shi, M; Dichek, DA

  • Angiotensin II type 1 receptor blocker inhibits arterial calcification in a pre-clinical model

    Armstrong, ZB; Boughner, DR; Drangova, M; Rogers, KA

  • The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Aroor, AR; Demarco, VG; Jia, G; Sun, Z; Nistala, R; Meininger, GA; Sowers, JR

  • Therapeutic potential of the renin angiotensin system in ischaemic stroke

    Arroja, MM; Reid, E; McCabe, C

  • Extracellular matrix, inflammation, and the angiogenic response

    Arroyo, AG; Iruela-Arispe, ML

  • Angiotensin II enhances the increase in monocyte chemoattractant protein-1 production induced by tumor necrosis factor-alpha from 3T3-L1 preadipocytes

    Asamizu, S; Urakaze, M; Kobashi, C; Ishiki, M; Norel Din, AK; Fujisaka, S; Kanatani, Y; Bukahari, A; Senda, S; Suzuki, H; Yamazaki, Y; Iwata, M; Usui, I; Yamazaki, K; Ogawa, H; Kobayashi, M; Tobe, K

  • No evidence for a local renin-angiotensin system in liver mitochondria

    Astin, R; Bentham, R; Djafarzadeh, S; Horscroft, JA; Kuc, RE; Leung, PS; Skipworth, JR; Vicencio, JM; Davenport, AP; Murray, AJ; Takala, J; Jakob, SM; Montgomery, H; Szabadkai, G

  • Telomeres and aging

    Aubert, G; Lansdorp, PM

  • Role of COX-2-derived PGE2 on vascular stiffness and function in hypertension

    Avendaño, MS; Martínez-Revelles, S; Aguado, A; Simões, MR; González-Amor, M; Palacios, R; Guillem-Llobat, P; Vassallo, DV; Vila, L; García-Puig, J; Beltrán, LM; Alonso, MJ; Cachofeiro, MV; Salaices, M; Briones, AM

  • Genetically modified mouse models used for studying the role of the AT2 receptor in cardiac hypertrophy and heart failure

    Avila, MD; Morgan, JP; Yan, X

  • Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease

    Ayoub, MA; Zhang, Y; Kelly, RS; See, HB; Johnstone, EK; McCall, EA; Williams, JH; Kelly, DJ; Pfleger, KD

  • Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles

    Ayyadevara, S; Mercanti, F; Wang, X; Mackintosh, SG; Tackett, AJ; Prayaga, SV; Romeo, F; Shmookler Reis, RJ; Mehta, JL

  • NOX2-induced myocardial fibrosis and diastolic dysfunction: role of the endothelium

    Bache, RJ; Chen, Y

  • Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    Backlund, M; Paukku, K; Kontula, KK; Lehtonen, JY

  • ACE2, angiotensin-(1–7), and Mas: the other side of the coin

    Bader, M

  • Cytoplasmic translocation of HuR contributes to angiotensin II induced cardiac fibrosis

    Bai, D; Ge, L; Gao, Y; Lu, X; Wang, H; Yang, G

  • The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension

    Bai, X; Lenhart, KC; Bird, KE; Suen, AA; Rojas, M; Kakoki, M; Li, F; Smithies, O; Mack, CP; Taylor, JM

  • A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology

    Balakumar, P; Jagadeesh, G

  • Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor

    Balakumar, P; Jagadeesh, G

  • Oxidative stress causes renal angiotensin II type 1 receptor upregulation, Na+/H+ exchanger 3 overstimulation, and hypertension

    Banday, AA; Lokhandwala, MF

  • Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy

    Bang, C; Batkai, S; Dangwal, S; Gupta, SK; Foinquinos, A; Holzmann, A; Just, A; Remke, J; Zimmer, K; Zeug, A; Ponimaskin, E; Schmiedl, A; Yin, X; Mayr, M; Halder, R; Fischer, A; Engelhardt, S; Wei, Y; Schober, A; Fiedler, J; Thum, T

  • Matrix metalloproteinase-2 knockout prevents angiotensin II-induced vascular injury

    Barhoumi, T; Fraulob-Aquino, JC; Mian, MOR; Ouerd, S; Idris-Khodja, N; Huo, KG; Rehman, A; Caillon, A; Dancose-Giambattisto, B; Ebrahimian, T; Lehoux, S; Paradis, P; Schiffrin, EL

  • T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury

    Barhoumi, T; Kasal, DA; Li, MW; Shbat, L; Laurant, P; Neves, MF; Paradis, P; Schiffrin, EL

  • Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo

    Barki-Harrington, L; Luttrell, LM; Rockman, HA

  • Angiotensin II mediates cell survival through upregulation and activation of the serum and glucocorticoid inducible kinase 1

    Baskin, R; Sayeski, PP

  • NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle

    Basset, O; Deffert, C; Foti, M; Bedard, K; Jaquet, V; Ogier-Denis, E; Krause, KH

  • Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II

    Basu, R; Fan, D; Kandalam, V; Lee, J; Das, SK; Wang, X; Baldwin, TA; Oudit, GY; Kassiri, Z

  • TIMP3 is the primary TIMP to regulate agonist-induced vascular remodelling and hypertension

    Basu, R; Lee, J; Morton, JS; Takawale, A; Fan, D; Kandalam, V; Wang, X; Davidge, ST; Kassiri, Z

  • Notch transcriptional control of vascular smooth muscle regulatory gene expression and function

    Basu, S; Srinivasan, DK; Yang, K; Raina, H; Banerjee, S; Zhang, R; Fisher, SA; Proweller, A

  • Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media

    Basu, U; Seravalli, J; Madayiputhiya, N; Adamec, J; Case, AJ; Zimmerman, MC

  • Beta-catenin downregulation is required for adaptive cardiac remodeling

    Baurand, A; Zelarayan, L; Betney, R; Gehrke, C; Dunger, S; Noack, C; Busjahn, A; Huelsken, J; Taketo, MM; Birchmeier, W; Dietz, R; Bergmann, MW

  • Central TrkB blockade attenuates ICV angiotensin II-hypertension and sympathetic nerve activity in male Sprague-Dawley rats

    Becker, BK; Wang, H; Zucker, IH

  • BDNF contributes to angiotensin II-mediated reductions in peak voltage-gated K+ current in cultured CATH.a cells

    Becker, BK; Wang, HJ; Tian, C; Zucker, IH

  • Dual agonist occupancy of AT1-R-α2C-AR heterodimers results in atypical Gs-PKA signaling

    Bellot, M; Galandrin, S; Boularan, C; Matthies, HJ; Despas, F; Denis, C; Javitch, J; Mazères, S; Sanni, SJ; Pons, V; Seguelas, MH; Hansen, JL; Pathak, A; Galli, A; Sénard, JM; Galés, C

  • Loss of Jagged1 in renin progenitors leads to focal kidney fibrosis

    Belyea, BC; Xu, F; Sequeira-Lopez, ML; Ariel Gomez, R

  • Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice

    Bendall, JK; Cave, AC; Heymes, C; Gall, N; Shah, AM

  • Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice

    Bendall, JK; Rinze, R; Adlam, D; Tatham, AL; de Bono, J; Channon, KM

  • Six commercially available angiotensin II AT1 receptor antibodies are non-specific

    Benicky, J; Hafko, R; Sanchez-Lemus, E; Aguilera, G; Saavedra, JM

  • Disruption of the Ang II type 1 receptor promotes longevity in mice

    Benigni, A; Corna, D; Zoja, C; Sonzogni, A; Latini, R; Salio, M; Conti, S; Rottoli, D; Longaretti, L; Cassis, P; Morigi, M; Coffman, TM; Remuzzi, G

  • Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice

    Benndorf, RA; Krebs, C; Hirsch-Hoffmann, B; Schwedhelm, E; Cieslar, G; Schmidt-Haupt, R; Steinmetz, OM; Meyer-Schwesinger, C; Thaiss, F; Haddad, M; Fehr, S; Heilmann, A; Helmchen, U; Hein, L; Ehmke, H; Stahl, RA; Böger, RH; Wenzel, UO

  • Vascular Smooth Muscle Cells in Atherosclerosis

    Bennett, MR; Sinha, S; Owens, GK

  • Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke

    Bennion, DM; Haltigan, E; Regenhardt, RW; Steckelings, UM; Sumners, C

  • Activation of the Neuroprotective Angiotensin-Converting Enzyme 2 in Rat Ischemic Stroke

    Bennion, DM; Haltigan, EA; Irwin, AJ; Donnangelo, LL; Regenhardt, RW; Pioquinto, DJ; Purich, DL; Sumners, C

  • Angiotensin type 2 receptor (AT2R): a challenging twin

    Berk, BC

  • Integrin-linked kinase is a central mediator in angiotensin II type 1- and chemokine receptor CXCR4 signaling in myocardial hypertrophy

    Bettink, SI; Werner, C; Chen, CH; Müller, P; Schirmer, SH; Walenta, KL; Böhm, M; Laufs, U; Friedrich, EB

  • Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet

    Beyer, AM; de Lange, WJ; Halabi, CM; Modrick, ML; Keen, HL; Faraci, FM; Sigmund, CD

  • Angiotensin II-induced arterial thickening, fibrosis and stiffening involves elevated arginase function

    Bhatta, A; Yao, L; Toque, HA; Shatanawi, A; Xu, Z; Caldwell, RB; Caldwell, RW

  • Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus

    Biancardi, VC; Stranahan, AM; Krause, EG; de Kloet, AD; Stern, JE

  • Residual cardiovascular risk in treated hypertension and hyperlipidaemia: the PRIME Study

    Blacher, J; Evans, A; Arveiler, D; Amouyel, P; Ferrières, J; Bingham, A; Yarnell, J; Haas, B; Montaye, M; Ruidavets, JB; Ducimetière, P

  • Novel role of mechanosensitive AT1B receptors in myogenic vasoconstriction

    Blodow, S; Schneider, H; Storch, U; Wizemann, R; Forst, AL; Gudermann, T; Mederos y Schnitzler, M

  • CD14 directs adventitial macrophage precursor recruitment: role in early abdominal aortic aneurysm formation

    Blomkalns, AL; Gavrila, D; Thomas, M; Neltner, BS; Blanco, VM; Benjamin, SB; McCormick, ML; Stoll, LL; Denning, GM; Collins, SP; Qin, Z; Daugherty, A; Cassis, LA; Thompson, RW; Weiss, RM; Lindower, PD; Pinney, SM; Chatterjee, T; Weintraub, NL

  • Cardiorenal actions of TRV120027, a novel ß-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure

    Boerrigter, G; Lark, MW; Whalen, EJ; Soergel, DG; Violin, JD; Burnett, JC

  • TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure

    Boerrigter, G; Soergel, DG; Violin, JD; Lark, MW; Burnett, JC

  • Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster

    Boettger, T; Beetz, N; Kostin, S; Schneider, J; Krüger, M; Hein, L; Braun, T

  • MicroRNA-29 in aortic dilation: implications for aneurysm formation

    Boon, RA; Seeger, T; Heydt, S; Fischer, A; Hergenreider, E; Horrevoets, AJ; Vinciguerra, M; Rosenthal, N; Sciacca, S; Pilato, M; van Heijningen, P; Essers, J; Brandes, RP; Zeiher, AM; Dimmeler, S

  • Putting the brakes on cardiac hypertrophy: exploiting the NO-cGMP counter-regulatory system

    Booz, GW

  • Involvement of protein kianse C and Ca2+ in angiotensin II-induced mitogenesis of cardiac fibroblasts

    Booz, GW; Dostal, DE; Singer, HA; Baker, KM

  • The adipose tissue and the involvement of the renin-angiotensin-aldosterone system in cardiometabolic syndrome

    Borghi, F; Sevá-Pessôa, B; Grassi-Kassisse, DM

  • Nox4 genetic inhibition in experimental hypertension and metabolic syndrome

    Bouabout, G; Ayme-Dietrich, E; Jacob, H; Champy, MF; Birling, MC; Pavlovic, G; Madeira, L; Fertak, LE; Petit-Demoulière, B; Sorg, T; Herault, Y; Mudgett, J; Monassier, L

  • Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression

    Bouley, R; Palomino, Z; Tang, SS; Nunes, P; Kobori, H; Lu, HA; Shum, WW; Sabolic, I; Brown, D; Ingelfinger, JR; Jung, FF

  • Notch3 is essential for regulation of the renal vascular tone

    Boulos, N; Helle, F; Dussaule, JC; Placier, S; Milliez, P; Djudjaj, S; Guerrot, D; Joutel, A; Ronco, P; Boffa, JJ; Chatziantoniou, C

  • The angiotensin II type 2 receptor and improved adjacent region function post-MI

    Bove, CM; Gilson, WD; Scott, CD; Epstein, FH; Yang, Z; Dimaria, JM; Berr, SS; French, BA; Bishop, SP; Kramer, CM

  • Nitric oxide mediates benefits of angiotensin II type 2 receptor overexpression during post-infarct remodeling

    Bove, CM; Yang, Z; Gilson, WD; Epstein, FH; French, BA; Berr, SS; Bishop, SP; Matsubara, H; Carey, RM; Kramer, CM

  • Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities

    Boyden, LM; Choi, M; Choate, KA; Nelson-Williams, CJ; Farhi, A; Toka, HR; Tikhonova, IR; Bjornson, R; Mane, SM; Colussi, G; Lebel, M; Gordon, RD; Semmekrot, BA; Poujol, A; Välimäki, MJ; De Ferrari, ME; Sanjad, SA; Gutkin, M; Karet, FE; Tucci, JR; Stockigt, JR; Keppler-Noreuil, KM; Porter, CC; Anand, SK; Whiteford, ML; Davis, ID; Dewar, SB; Bettinelli, A; Fadrowski, JJ; Belsha, CW; Hunley, TE; Nelson, RD; Trachtman, H; Cole, TR; Pinsk, M; Bockenhauer, D; Shenoy, M; Vaidyanathan, P; Foreman, JW; Rasoulpour, M; Thameem, F; Al-Shahrouri, HZ; Radhakrishnan, J; Gharavi, AG; Goilav, B; Lifton, RP

  • Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome

    Bracey, NA; Gershkovich, B; Chun, J; Vilaysane, A; Meijndert, HC; Wright, JR; Fedak, PW; Beck, PL; Muruve, DA; Duff, HJ

  • Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy

    Bradford, CN; Ely, DR; Raizada, MK

  • Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation

    Brands, MW; Banes-Berceli, AK; Inscho, EW; Al-Azawi, H; Allen, AJ; Labazi, H

  • Vascular inflammation and the renin-angiotensin system

    Brasier, AR; Recinos, A; Eledrisi, MS

  • Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    Brown, DI; Griendling, KK

  • Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis

    Brown, NJ

  • Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research

    Bumpus, FM; Catt, KJ; Chiu, AT; DeGasparo, M; Goodfriend, T; Husain, A; Peach, MJ; Taylor, DG; Timmermans, PB

  • Elevated blood pressure and heart rate in human renin receptor transgenic rats

    Burcklé, CA; Jan Danser, AH; Müller, DN; Garrelds, IM; Gasc, JM; Popova, E; Plehm, R; Peters, J; Bader, M; Nguyen, G

  • Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts

    Burger, D; Montezano, AC; Nishigaki, N; He, Y; Carter, A; Touyz, RM

  • Microparticles: biomarkers and beyond

    Burger, D; Schock, S; Thompson, CS; Montezano, AC; Hakim, AM; Touyz, RM

  • Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia

    Burks, TN; Andres-Mateos, E; Marx, R; Mejias, R; Van Erp, C; Simmers, JL; Walston, JD; Ward, CW; Cohn, RD

  • Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation

    Burstein, B; Nattel, S

  • Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy

    Byrne, JA; Grieve, DJ; Bendall, JK; Li, JM; Gove, C; Lambeth, JD; Cave, AC; Shah, AM

  • γδ T Cells Mediate Angiotensin II-Induced Hypertension and Vascular Injury

    Caillon, A; Mian, MOR; Fraulob-Aquino, JC; Huo, KG; Barhoumi, T; Ouerd, S; Sinnaeve, PR; Paradis, P; Schiffrin, EL

  • iPLA2β overexpression in smooth muscle exacerbates angiotensin II-induced hypertension and vascular remodeling

    Calderon, LE; Liu, S; Su, W; Xie, Z; Guo, Z; Eberhard, W; Gong, MC

  • c-Src Inhibition Improves Cardiovascular Function but not Remodeling or Fibrosis in Angiotensin II-Induced Hypertension

    Callera, GE; Antunes, TT; He, Y; Montezano, AC; Yogi, A; Savoia, C; Touyz, RM

  • Galectin-3 mediates aldosterone-induced vascular fibrosis

    Calvier, L; Miana, M; Reboul, P; Cachofeiro, V; Martinez-Martinez, E; de Boer, RA; Poirier, F; Lacolley, P; Zannad, F; Rossignol, P; López-Andrés, N

  • A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling

    Camacho Londoño, JE; Tian, Q; Hammer, K; Schröder, L; Camacho Londoño, J; Reil, JC; He, T; Oberhofer, M; Mannebach, S; Mathar, I; Philipp, SE; Tabellion, W; Schweda, F; Dietrich, A; Kaestner, L; Laufs, U; Birnbaumer, L; Flockerzi, V; Freichel, M; Lipp, P

  • Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation

    Campos, AH; Wang, W; Pollman, MJ; Gibbons, GH

  • DNA microarray profiling to identify angiotensin-responsive genes in vascular smooth muscle cells: potential mediators of vascular disease

    Campos, AH; Zhao, Y; Pollman, MJ; Gibbons, GH

  • S1PR1 (Sphingosine-1-Phosphate Receptor 1) Signaling Regulates Blood Flow and Pressure

    Cantalupo, A; Gargiulo, A; Dautaj, E; Liu, C; Zhang, Y; Hla, T; Di Lorenzo, A

  • Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

    Cantalupo, A; Zhang, Y; Kothiya, M; Galvani, S; Obinata, H; Bucci, M; Giordano, FJ; Jiang, XC; Hla, T; Di Lorenzo, A

  • GPCR signaling and cardiac function

    Capote, LA; Mendez Perez, R; Lymperopoulos, A

  • Angiotensin II activates the RhoA exchange factor Arhgef1 in humans

    Carbone, ML; Brégeon, J; Devos, N; Chadeuf, G; Blanchard, A; Azizi, M; Pacaud, P; Jeunemaître, X; Loirand, G

  • MicroRNA-133 controls cardiac hypertrophy

    Carè, A; Catalucci, D; Felicetti, F; Bonci, D; Addario, A; Gallo, P; Bang, ML; Segnalini, P; Gu, Y; Dalton, ND; Elia, L; Latronico, MV; Høydal, M; Autore, C; Russo, MA; Dorn, GW; Ellingsen, O; Ruiz-Lozano, P; Peterson, KL; Croce, CM; Peschle, C; Condorelli, G

  • Newly discovered components and actions of the renin-angiotensin system

    Carey, RM

  • Superoxide dismutase 1 limits renal microvascular remodeling and attenuates arteriole and blood pressure responses to angiotensin II via modulation of nitric oxide bioavailability

    Carlström, M; Lai, EY; Ma, Z; Steege, A; Patzak, A; Eriksson, UJ; Lundberg, JO; Wilcox, CS; Persson, AE

  • Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains

    Carquin, M; D’Auria, L; Pollet, H; Bongarzone, ER; Tyteca, D

  • Role of vascular smooth muscle PPARγ in regulating AT1 receptor signaling and angiotensin II-dependent hypertension

    Carrillo-Sepulveda, MA; Keen, HL; Davis, DR; Grobe, JL; Sigmund, CD

  • Angiotensinogen gene silencing reduces markers of lipid accumulation and inflammation in cultured adipocytes

    Carroll, WX; Kalupahana, NS; Booker, SL; Siriwardhana, N; Lemieux, M; Saxton, AM; Moustaid-Moussa, N

  • Local adipose tissue renin-angiotensin system

    Cassis, LA; Police, SB; Yiannikouris, F; Thatcher, SE

  • Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process

    Castañeda-Bueno, M; Cervantes-Pérez, LG; Vázquez, N; Uribe, N; Kantesaria, S; Morla, L; Bobadilla, NA; Doucet, A; Alessi, DR; Gamba, G

  • Transcriptional regulator RBP-J regulates the number and plasticity of renin cells

    Castellanos Rivera, RM; Monteagudo, MC; Pentz, ES; Glenn, ST; Gross, KW; Carretero, O; Sequeira-Lopez, ML; Gomez, RA

  • MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension

    Castoldi, G; Di Gioia, CR; Bombardi, C; Catalucci, D; Corradi, B; Gualazzi, MG; Leopizzi, M; Mancini, M; Zerbini, G; Condorelli, G; Stella, A

  • Prevention of diabetic nephropathy by compound 21, selective agonist of angiotensin type 2 receptors, in Zucker diabetic fatty rats

    Castoldi, G; di Gioia, CR; Bombardi, C; Maestroni, S; Carletti, R; Steckelings, UM; Dahlöf, B; Unger, T; Zerbini, G; Stella, A

  • Aldosterone and Left Ventricular Remodeling

    Catena, C; Colussi, G; Brosolo, G; Novello, M; Sechi, LA

  • The angiotensin IV/AT4 receptor

    Chai, SY; Fernando, R; Peck, G; Ye, SY; Mendelsohn, FA; Jenkins, TA; Albiston, AL

  • Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography

    Chai, SY; Mendelsohn, FA; Paxinos, G

  • Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension

    Chan, CT; Sobey, CG; Lieu, M; Ferens, D; Kett, MM; Diep, H; Kim, HA; Krishnan, SM; Lewis, CV; Salimova, E; Tipping, P; Vinh, A; Samuel, CS; Peter, K; Guzik, TJ; Kyaw, TS; Toh, BH; Bobik, A; Drummond, GR

  • Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Chan, SL; Baumbach, GL

  • Epidermal growth factor receptor is critical for angiotensin II-mediated hypertrophy in cerebral arterioles

    Chan, SL; Umesalma, S; Baumbach, GL

  • Angiotensin II type II receptor deficiency accelerates the development of nephropathy in type I diabetes via oxidative stress and ACE2

    Chang, SY; Chen, YW; Chenier, I; Tran, SM; Zhang, SL

  • Angiotensin II in inflammation, immunity and rheumatoid arthritis

    Chang, Y; Wei, W

  • Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    Chaplin, NL; Nieves-Cintrón, M; Fresquez, AM; Navedo, MF; Amberg, GC

  • Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute?

    Chappell, MC

  • Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS receptor axis: more than regulation of blood pressure?

    Chappell, MC

  • Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy

    Chatterjee, A; Mir, SA; Dutta, D; Mitra, A; Pathak, K; Sarkar, S

  • Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats

    Chen, A; Huang, BS; Wang, HW; Ahmad, M; Leenen, FH

  • Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation

    Chen, AT; Guo, C; Dumas, KJ; Ashrafi, K; Hu, PJ

  • Ubiquitin-activating enzyme E1 inhibitor PYR41 attenuates angiotensin II-induced activation of dendritic cells via the IκBa/NF-κB and MKP1/ERK/STAT1 pathways

    Chen, C; Meng, Y; Wang, L; Wang, HX; Tian, C; Pang, GD; Li, HH; Du, J

  • TNFR1-deficient mice display altered blood pressure and renal responses to ANG II infusion

    Chen, CC; Pedraza, PL; Hao, S; Stier, CT; Ferreri, NR

  • Impact of Angiotensin Type 1A Receptors in Principal Cells of the Collecting Duct on Blood Pressure and Hypertension

    Chen, D; Stegbauer, J; Sparks, MA; Kohan, D; Griffiths, R; Herrera, M; Gurley, SB; Coffman, TM

  • Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways

    Chen, G; Pan, SQ; Shen, C; Pan, SF; Zhang, XM; He, QY

  • Age-Associated Sirtuin 1 Reduction in Vascular Smooth Muscle Links Vascular Senescence and Inflammation to Abdominal Aortic Aneurysm

    Chen, HZ; Wang, F; Gao, P; Pei, JF; Liu, Y; Xu, TT; Tang, X; Fu, WY; Lu, J; Yan, YF; Wang, XM; Han, L; Zhang, ZQ; Zhang, R; Zou, MH; Liu, DP

  • Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway

    Chen, J; Chen, JK; Harris, RC

  • EGFR signaling promotes TGFβ-dependent renal fibrosis

    Chen, J; Chen, JK; Nagai, K; Plieth, D; Tan, M; Lee, TC; Threadgill, DW; Neilson, EG; Harris, RC

  • Loss of Smooth Muscle α-Actin Leads to NF-κB-Dependent Increased Sensitivity to Angiotensin II in Smooth Muscle Cells and Aortic Enlargement

    Chen, J; Peters, A; Papke, CL; Villamizar, C; Ringuette, LJ; Cao, J; Wang, S; Ma, S; Gong, L; Byanova, KL; Xiong, J; Zhu, MX; Madonna, R; Kee, P; Geng, YJ; Brasier, AR; Davis, EC; Prakash, S; Kwartler, CS; Milewicz, DM

  • Angiotensin-Converting Enzyme in Smooth Muscle Cells Promotes Atherosclerosis-Brief Report

    Chen, X; Howatt, DA; Balakrishnan, A; Moorleghen, JJ; Wu, C; Cassis, LA; Daugherty, A; Lu, H

  • Contributions of leukocyte angiotensin-converting enzyme to development of atherosclerosis

    Chen, X; Lu, H; Zhao, M; Tashiro, K; Cassis, LA; Daugherty, A

  • TGF-β Neutralization Enhances AngII-Induced Aortic Rupture and Aneurysm in Both Thoracic and Abdominal Regions

    Chen, X; Rateri, DL; Howatt, DA; Balakrishnan, A; Moorleghen, JJ; Cassis, LA; Daugherty, A

  • Pioglitazone inhibits angiotensin II-induced atrial fibroblasts proliferation via NF-κB/TGF-β1/TRIF/TRAF6 pathway

    Chen, XQ; Liu, X; Wang, QX; Zhang, MJ; Guo, M; Liu, F; Jiang, WF; Zhou, L

  • Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a

    Chen, Z; Wen, L; Martin, M; Hsu, CY; Fang, L; Lin, FM; Lin, TY; Geary, MJ; Geary, GG; Zhao, Y; Johnson, DA; Chen, JW; Lin, SJ; Chien, S; Huang, HD; Miller, YI; Huang, PH; Shyy, JY

  • Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model

    Cheng, J; Koenig, SN; Kuivaniemi, HS; Garg, V; Hans, CP

  • MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?

    Cheng, Y; Ji, R; Yue, J; Yang, J; Liu, X; Chen, H; Dean, DB; Zhang, C

  • PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension

    Chichger, H; Vang, A; O’Connell, KA; Zhang, P; Mende, U; Harrington, EO; Choudhary, G

  • Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation

    Chidlow, JH; Sessa, WC

  • Upregulation of the Na(+)-K(+)-2Cl(-) cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats

    Cho, HM; Lee, DY; Kim, HY; Lee, HA; Seok, YM; Kim, IK

  • The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4)

    Choe, N; Kwon, DH; Shin, S; Kim, YS; Kim, YK; Kim, J; Ahn, Y; Eom, GH; Kook, H

  • Augmented S-nitrosylation contributes to impaired relaxation in angiotensin II hypertensive mouse aorta: role of thioredoxin reductase

    Choi, H; Allahdadi, KJ; Tostes, RC; Webb, RC

  • The intercalated disk protein, mXinalpha, is capable of interacting with beta-catenin and bundling actin filaments

    Choi, S; Gustafson-Wagner, EA; Wang, Q; Harlan, SM; Sinn, HW; Lin, JL; Lin, JJ

  • Targeted label-free quantitative analysis of secretory proteins from adipocytes in response to oxidative stress

    Choi, S; Kim, J; Yea, K; Suh, PG; Kim, J; Ryu, SH

  • Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion

    Choi, YS; de Mattos, AB; Shao, D; Li, T; Nabben, M; Kim, M; Wang, W; Tian, R; Kolwicz, SC

  • Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease

    Chow, BS; Allen, TJ

  • Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis

    Chow, BS; Kocan, M; Bosnyak, S; Sarwar, M; Wigg, B; Jones, ES; Widdop, RE; Summers, RJ; Bathgate, RA; Hewitson, TD; Samuel, CS

  • Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists

    Christensen, GL; Kelstrup, CD; Lyngsø, C; Sarwar, U; Bøgebo, R; Sheikh, SP; Gammeltoft, S; Olsen, JV; Hansen, JL

  • Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice

    Chu, Y; Wilson, K; Gu, H; Wegman-Points, L; Dooley, SA; Pierce, GL; Cheng, G; Pena Silva, RA; Heistad, DD; Hasan, D

  • Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis

    Chun, HJ; Ali, ZA; Kojima, Y; Kundu, RK; Sheikh, AY; Agrawal, R; Zheng, L; Leeper, NJ; Pearl, NE; Patterson, AJ; Anderson, JP; Tsao, PS; Lenardo, MJ; Ashley, EA; Quertermous, T

  • Control of energy balance by the brain renin-angiotensin system

    Claflin, KE; Grobe, JL

  • Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism

    Claflin, KE; Sandgren, JA; Lambertz, AM; Weidemann, BJ; Littlejohn, NK; Burnett, CM; Pearson, NA; Morgan, DA; Gibson-Corley, KN; Rahmouni, K; Grobe, JL

  • miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy

    Clark, AL; Maruyama, S; Sano, S; Accorsi, A; Girgenrath, M; Walsh, K; Naya, FJ

  • Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake

    Coble, JP; Cassell, MD; Davis, DR; Grobe, JL; Sigmund, CD

  • Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ

    Coble, JP; Grobe, JL; Johnson, AK; Sigmund, CD

  • Activity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brain angiotensin

    Coble, JP; Johnson, RF; Cassell, MD; Johnson, AK; Grobe, JL; Sigmund, CD

  • The inextricable role of the kidney in hypertension

    Coffman, TM

  • Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles

    Colombo, M; Raposo, G; Théry, C

  • Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model

    Cook, JL; Re, RN

  • The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor

    Cook, JL; Re, RN; deHaro, DL; Abadie, JM; Peters, M; Alam, J

  • Dimorphic effects of transforming growth factor-β signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome

    Cook, JR; Clayton, NP; Carta, L; Galatioto, J; Chiu, E; Smaldone, S; Nelson, CA; Cheng, SH; Wentworth, BM; Ramirez, F

  • The senescence-associated secretory phenotype: the dark side of tumor suppression

    Coppé, JP; Desprez, PY; Krtolica, A; Campisi, J

  • Angiotensin II induces the generation of procoagulant microparticles by human mononuclear cells via an angiotensin type 2 receptor-mediated pathway

    Cordazzo, C; Neri, T; Petrini, S; Lombardi, S; Balìa, C; Cianchetti, S; Carmazzi, Y; Paggiaro, P; Pedrinelli, R; Celi, A

  • Full Expression of Cardiomyopathy Is Partly Dependent on B-Cells: A Pathway That Involves Cytokine Activation, Immunoglobulin Deposition, and Activation of Apoptosis

    Cordero-Reyes, AM; Youker, KA; Trevino, AR; Celis, R; Hamilton, DJ; Flores-Arredondo, JH; Orrego, CM; Bhimaraj, A; Estep, JD; Torre-Amione, G

  • Cardiovascular effects of angiotensin A: a novel peptide of the renin-angiotensin system

    Coutinho, DC; Foureaux, G; Rodrigues, KD; Salles, RL; Moraes, PL; Murça, TM; De Maria, ML; Gomes, ER; Santos, RA; Guatimosim, S; Ferreira, AJ

  • Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model

    Crassous, PA; Couloubaly, S; Huang, C; Zhou, Z; Baskaran, P; Kim, DD; Papapetropoulos, A; Fioramonti, X; Durán, WN; Beuve, A

  • Recent advances involving the renin-angiotensin system

    Crowley, SD; Coffman, TM

  • Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney

    Crowley, SD; Gurley, SB; Herrera, MJ; Ruiz, P; Griffiths, R; Kumar, AP; Kim, HS; Smithies, O; Le, TH; Coffman, TM

  • A role for angiotensin II type 1 receptors on bone marrow-derived cells in the pathogenesis of angiotensin II-dependent hypertension

    Crowley, SD; Song, YS; Sprung, G; Griffiths, R; Sparks, M; Yan, M; Burchette, JL; Howell, DN; Lin, EE; Okeiyi, B; Stegbauer, J; Yang, Y; Tharaux, PL; Ruiz, P

  • Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells

    Cuevas, CA; Gonzalez, AA; Inestrosa, NC; Vio, CP; Prieto, MC

  • β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats

    Cuevas, CA; Tapia-Rojas, C; Cespedes, C; Inestrosa, NC; Vio, CP

  • Orphan Nuclear Receptor Nur77 Inhibits Angiotensin II-Induced Vascular Remodeling via Downregulation of β-Catenin

    Cui, M; Cai, Z; Chu, S; Sun, Z; Wang, X; Hu, L; Yi, J; Shen, L; He, B

  • ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth

    Cui, T; Nakagami, H; Iwai, M; Takeda, Y; Shiuchi, T; Tamura, K; Daviet, L; Horiuchi, M

  • Macrophages and Dendritic Cells: Partners in Atherogenesis

    Cybulsky, MI; Cheong, C; Robbins, CS

  • The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy

    D’Amore, A; Black, MJ; Thomas, WG

  • Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison

    Dabul, S; Bathgate-Siryk, A; Valero, TR; Jafferjee, M; Sturchler, E; McDonald, P; Koch, WJ; Lymperopoulos, A

  • Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol

    Dahlöf, B; Devereux, RB; Kjeldsen, SE; Julius, S; Beevers, G; de Faire, U; Fyhrquist, F; Ibsen, H; Kristiansson, K; Lederballe-Pedersen, O; Lindholm, LH; Nieminen, MS; Omvik, P; Oparil, S; Wedel, H

  • Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy

    Dai, DF; Chen, T; Szeto, H; Nieves-Cintrón, M; Kutyavin, V; Santana, LF; Rabinovitch, PS

  • Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure

    Dai, DF; Johnson, SC; Villarin, JJ; Chin, MT; Nieves-Cintrón, M; Chen, T; Marcinek, DJ; Dorn, GW; Kang, YJ; Prolla, TA; Santana, LF; Rabinovitch, PS

  • p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice

    Dai, HL; Hu, WY; Jiang, LH; Li, L; Gaung, XF; Xiao, ZC

  • Targeting vascular (endothelial) dysfunction

    Daiber, A; Steven, S; Weber, A; Shuvaev, VV; Muzykantov, VR; Laher, I; Li, H; Lamas, S; Münzel, T

  • Failure of adipocyte differentiation causes type II diabetes mellitus?

    Danforth, E

  • Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension

    Dange, RB; Agarwal, D; Masson, GS; Vila, J; Wilson, B; Nair, A; Francis, J

  • Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells

    Das, S; Senapati, P; Chen, Z; Reddy, MA; Ganguly, R; Lanting, L; Mandi, V; Bansal, A; Leung, A; Zhang, S; Jia, Y; Wu, X; Schones, DE; Natarajan, R

  • Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice

    Daugherty, A; Manning, MW; Cassis, LA

  • Genetic variants of the Renin Angiotensin system: effects on atherosclerosis in experimental models and humans

    Daugherty, A; Poduri, A; Chen, X; Lu, H; Cassis, LA

  • Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE-/- mice

    Daugherty, A; Rateri, DL; Charo, IF; Owens, AP; Howatt, DA; Cassis, LA

  • Mkk4 is a negative regulator of the transforming growth factor beta 1 signaling associated with atrial remodeling and arrhythmogenesis with age

    Davies, L; Jin, J; Shen, W; Tsui, H; Shi, Y; Wang, Y; Zhang, Y; Hao, G; Wu, J; Chen, S; Fraser, JA; Dong, N; Christoffels, V; Ravens, U; Huang, CLH; Zhang, H; Cartwright, EJ; Wang, X; Lei, M

  • Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms

    Davis, FM; Rateri, DL; Balakrishnan, A; Howatt, DA; Strickland, DK; Muratoglu, SC; Haggerty, CM; Fornwalt, BK; Cassis, LA; Daugherty, A

  • Abdominal aortic aneurysm: novel mechanisms and therapies

    Davis, FM; Rateri, DL; Daugherty, A

  • Myofibroblasts: trust your heart and let fate decide

    Davis, J; Molkentin, JD

  • Divergent functions of angiotensin II receptor isoforms in the brain

    Davisson, RL; Oliverio, MI; Coffman, TM; Sigmund, CD

  • Hypertension: the missing WNKs

    Dbouk, HA; Huang, CL; Cobb, MH

  • Plk1 regulates contraction of postmitotic smooth muscle cells and is required for vascular homeostasis

    De Cárcer, G; Wachowicz, P; Martínez-Martínez, S; Oller, J; Méndez-Barbero, N; Escobar, B; González-Loyola, A; Takaki, T; El Bakkali, A; Cámara, JA; Jiménez-Borreguero, LJ; Bustelo, XR; Cañamero, M; Mulero, F; de Los Ángeles Sevilla, M; Montero, MJ; Redondo, JM; Malumbres, M

  • Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: effects of losartan and atenolol

    De Cavanagh, EM; Ferder, LF; Ferder, MD; Stella, IY; Toblli, JE; Inserra, F

  • Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria?

    De Cavanagh, EM; Inserra, F; Ferder, L

  • Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition

    De Cavanagh, EM; Inserra, F; Ferder, L

  • International union of pharmacology. XXIII. The angiotensin II receptors

    De Gasparo, M; Catt, KJ; Inagami, T; Wright, JW; Unger, T

  • The effect of angiotensin-converting enzyme inhibition using captopril on energy balance and glucose homeostasis

    De Kloet, AD; Krause, EG; Kim, DH; Sakai, RR; Seeley, RJ; Woods, SC

  • Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control

    De Kloet, AD; Liu, M; Rodríguez, V; Krause, EG; Sumners, C

  • Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity

    De Kloet, AD; Pati, D; Wang, L; Hiller, H; Sumners, C; Frazier, CJ; Seeley, RJ; Herman, JP; Woods, SC; Krause, EG

  • Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system

    De Kloet, AD; Wang, L; Ludin, JA; Smith, JA; Pioquinto, DJ; Hiller, H; Steckelings, UM; Scheuer, DA; Sumners, C; Krause, EG

  • A Unique “Angiotensin-Sensitive” Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress

    De Kloet, AD; Wang, L; Pitra, S; Hiller, H; Smith, JA; Tan, Y; Nguyen, D; Cahill, KM; Sumners, C; Stern, JE; Krause, EG

  • Coordinating tissue interactions: Notch signaling in cardiac development and disease

    De la Pompa, JL; Epstein, JA

  • Clinical perspectives and fundamental aspects of local cardiovascular and renal Renin-Angiotensin systems

    De Mello, WC; Frohlich, ED

  • Direct evidence of intracrine angiotensin II signaling in neurons

    Deliu, E; Brailoiu, GC; Eguchi, S; Hoffman, NE; Rabinowitz, JE; Tilley, DG; Madesh, M; Koch, WJ; Brailoiu, E

  • HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling

    Demos-Davies, KM; Ferguson, BS; Cavasin, MA; Mahaffey, JH; Williams, SM; Spiltoir, JI; Schuetze, KB; Horn, TR; Chen, B; Ferrara, C; Scellini, B; Piroddi, N; Tesi, C; Poggesi, C; Jeong, MY; McKinsey, TA

  • Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context

    Devost, D; Sleno, R; Pétrin, D; Zhang, A; Shinjo, Y; Okde, R; Aoki, J; Inoue, A; Hébert, TE

  • Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production

    Dikalov, SI; Dikalova, AE; Bikineyeva, AT; Schmidt, HH; Harrison, DG; Griendling, KK

  • Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease

    Dikalov, SI; Nazarewicz, RR

  • Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension

    Dikalov, SI; Nazarewicz, RR; Bikineyeva, A; Hilenski, L; Lassègue, B; Griendling, KK; Harrison, DG; Dikalova, AE

  • Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice

    Dikalova, A; Clempus, R; Lassègue, B; Cheng, G; McCoy, J; Dikalov, S; San Martin, A; Lyle, A; Weber, DS; Weiss, D; Taylor, WR; Schmidt, HH; Owens, GK; Lambeth, JD; Griendling, KK

  • Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension

    Dikalova, AE; Itani, HA; Nazarewicz, RR; McMaster, WG; Flynn, CR; Uzhachenko, R; Fessel, JP; Gamboa, JL; Harrison, DG; Dikalov, SI

  • Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor

    Diniz, GP; Lino, CA; Guedes, EC; Moreira, LN; Barreto-Chaves, ML

  • Angiotensin II activates different calcium signaling pathways in adipocytes

    Dolgacheva, LP; Turovskaya, MV; Dynnik, VV; Zinchenko, VP; Goncharov, NV; Davletov, B; Turovsky, EA

  • Angiotensin II induces renal plasminogen activator inhibitor-1 and cyclooxygenase-2 expression post-transcriptionally via activation of the mRNA-stabilizing factor human-antigen R

    Doller, A; Gauer, S; Sobkowiak, E; Geiger, H; Pfeilschifter, J; Eberhardt, W

  • Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity

    Domazet, I; Holleran, BJ; Richard, A; Vandenberghe, C; Lavigne, P; Escher, E; Leduc, R; Guillemette, G

  • Modulation of the action of insulin by angiotensin-(1-7)

    Dominici, FP; Burghi, V; Muñoz, MC; Giani, JF

  • Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy

    Dong, B; Yu, QT; Dai, HY; Gao, YY; Zhou, ZL; Zhang, L; Jiang, H; Gao, F; Li, SY; Zhang, YH; Bian, HJ; Liu, CX; Wang, N; Xu, H; Pan, CM; Song, HD; Zhang, C; Zhang, Y

  • Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction

    Doughan, AK; Harrison, DG; Dikalov, SI

  • Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice

    Douglas, G; Bendall, JK; Crabtree, MJ; Tatham, AL; Carter, EE; Hale, AB; Channon, KM

  • Mutual antagonism between IP(3)RII and miRNA-133a regulates calcium signals and cardiac hypertrophy

    Drawnel, FM; Wachten, D; Molkentin, JD; Maillet, M; Aronsen, JM; Swift, F; Sjaastad, I; Liu, N; Catalucci, D; Mikoshiba, K; Hisatsune, C; Okkenhaug, H; Andrews, SR; Bootman, MD; Roderick, HL

  • Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression

    Du Bois, P; Pablo Tortola, C; Lodka, D; Kny, M; Schmidt, F; Song, K; Schmidt, S; Bassel-Duby, R; Olson, EN; Fielitz, J

  • G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells: thrombin- and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor

    Du, J; Sperling, LS; Marrero, MB; Phillips, L; Delafontaine, P

  • Tumor necrosis factor: a mechanistic link between angiotensin-II-induced cardiac inflammation and fibrosis

    Duerrschmid, C; Trial, J; Wang, Y; Entman, ML; Haudek, SB

  • The renin-angiotensin system, bone marrow and progenitor cells

    Durik, M; Sevá Pessôa, B; Roks, AJ

  • Estimation of angiotensin II concentration in human plasma by radioimmunoassay. Some applications to physiological and clinical states

    Düsterdieck, G; McElwee, G

  • Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress

    Ebrahimian, T; Li, MW; Lemarié, CA; Simeone, SM; Pagano, PJ; Gaestel, M; Paradis, P; Wassmann, S; Schiffrin, EL

  • Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK

    Eguchi, S; Dempsey, PJ; Frank, GD; Motley, ED; Inagami, T

  • Metalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling

    Eguchi, S; Frank, GD; Mifune, M; Inagami, T

  • Intracellular signaling of angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt

    Eguchi, S; Iwasaki, H; Ueno, H; Frank, GD; Motley, ED; Eguchi, K; Marumo, F; Hirata, Y; Inagami, T

  • Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells

    Eguchi, S; Numaguchi, K; Iwasaki, H; Matsumoto, T; Yamakawa, T; Utsunomiya, H; Motley, ED; Kawakatsu, H; Owada, KM; Hirata, Y; Marumo, F; Inagami, T

  • Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB

    El Bekay, R; Alvarez, M; Monteseirín, J; Alba, G; Chacón, P; Vega, A; Martin-Nieto, J; Jiménez, J; Pintado, E; Bedoya, FJ; Sobrino, F

  • Aortic valvular heart disease: Is there a place for angiotensin-converting-enzyme inhibitors?

    Elder, DH; McAlpine-Scott, V; Choy, AM; Struthers, AD; Lang, CC

  • An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease

    Elkahloun, AG; Hafko, R; Saavedra, JM

  • ADAM17 silencing by adenovirus encoding miRNA-embedded siRNA revealed essential signal transduction by angiotensin II in vascular smooth muscle cells

    Elliott, KJ; Bourne, AM; Takayanagi, T; Takaguri, A; Kobayashi, T; Eguchi, K; Eguchi, S

  • Lack of specificity of commercial antibodies leads to misidentification of angiotensin type-1 receptor protein

    Elliott, KJ; Kimura, K; Eguchi, S

  • Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney

    Ellis, B; Li, XC; Miguel-Qin, E; Gu, V; Zhuo, JL

  • Oxidative stress and abdominal aortic aneurysm: potential treatment targets

    Emeto, TI; Moxon, JV; Au, M; Golledge, J

  • Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats

    Erdos, B; Backes, I; McCowan, ML; Hayward, LF; Scheuer, DA

  • Immunosuppression-Independent Role of Regulatory T Cells against Hypertension-Driven Renal Dysfunctions

    Fabbiano, S; Menacho-Márquez, M; Robles-Valero, J; Pericacho, M; Matesanz-Marín, A; García-Macías, C; Sevilla, MA; Montero, MJ; Alarcón, B; López-Novoa, JM; Martín, P; Bustelo, XR

  • Nonclassical resident macrophages are important determinants in the development of myocardial fibrosis

    Falkenham, A; de Antueno, R; Rosin, N; Betsch, D; Lee, TD; Duncan, R; Légaré, JF

  • Early fibroblast progenitor cell migration to the AngII-exposed myocardium is not CXCL12 or CCL2 dependent as previously thought

    Falkenham, A; Sopel, M; Rosin, N; Lee, TD; Issekutz, T; Légaré, JF

  • Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction

    Fan, D; Takawale, A; Basu, R; Patel, V; Lee, J; Kandalam, V; Wang, X; Oudit, GY; Kassiri, Z

  • Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease

    Fan, D; Takawale, A; Lee, J; Kassiri, Z

  • A Disintegrin and Metalloprotease-17 Regulates Pressure Overload-Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1

    Fan, D; Takawale, A; Shen, M; Samokhvalov, V; Basu, R; Patel, V; Wang, X; Fernandez-Patron, C; Seubert, JM; Oudit, GY; Kassiri, Z

  • Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection

    Fan, LM; Douglas, G; Bendall, JK; McNeill, E; Crabtree, MJ; Hale, AB; Mai, A; Li, JM; McAteer, MA; Schneider, JE; Choudhury, RP; Channon, KM

  • The renin-angiotensin system and the gastrointestinal mucosa

    Fändriks, L

  • Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension

    Faraco, G; Sugiyama, Y; Lane, D; Garcia-Bonilla, L; Chang, H; Santisteban, MM; Racchumi, G; Murphy, M; Van Rooijen, N; Anrather, J; Iadecola, C

  • Cardiovascular effects of the angiotensin type 2 receptor

    Faria-Costa, G; Leite-Moreira, A; Henriques-Coelho, T

  • Modulation of glucose metabolism by the renin-angiotensin-aldosterone system

    Favre, GA; Esnault, VL; Van Obberghen, E

  • MicroRNA Regulation of Atherosclerosis

    Feinberg, MW; Moore, KJ

  • Unconventional hom*ologous internalization of the angiotensin II type-1 receptor induced by G-protein-independent signals

    Feng, YH; Ding, Y; Ren, S; Zhou, L; Xu, C; Karnik, SS

  • Mechanisms of remodelling: a question of life (stem cell production) and death (myocyte apoptosis)

    Ferrari, R; Ceconi, C; Campo, G; Cangiano, E; Cavazza, C; Secchiero, P; Tavazzi, L

  • Cardiac remodelling and RAS inhibition

    Ferrario, CM

  • New physiological concepts of the renin-angiotensin system from the investigation of precursors and products of angiotensin I metabolism

    Ferrario, CM

  • Intracrine angiotensin II functions originate from noncanonical pathways in the human heart

    Ferrario, CM; Ahmad, S; Varagic, J; Cheng, CP; Groban, L; Wang, H; Collawn, JF; Dell'Italia, LJ

  • Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases

    Ferreira, AJ; Santos, RA; Bradford, CN; Mecca, AP; Sumners, C; Katovich, MJ; Raizada, MK

  • Requirement of protein kinase D1 for pathological cardiac remodeling

    Fielitz, J; Kim, M-S; Shelton, JM; Qi, X; Hill, JA; Richardson, JA; Bassel-Duby, R; Olson, EN

  • Caloric restriction ameliorates angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy

    Finckenberg, P; Eriksson, O; Baumann, M; Merasto, S; Lalowski, MM; Levijoki, J; Haasio, K; Kytö, V; Muller, DN; Luft, FC; Oresic, M; Mervaala, E

  • Signaling by the angiotensin-converting enzyme

    Fleming, I

  • Plasminogen Activator Inhibitor Type I Controls Cardiomyocyte Transforming Growth Factor-β and Cardiac Fibrosis

    Flevaris, P; Khan, SS; Eren, M; Schuldt, AJT; Shah, SJ; Lee, DC; Gupta, S; Shapiro, AD; Burridge, PW; Ghosh, AK; Vaughan, DE

  • Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk

    Folli, F; Kahn, CR; Hansen, H; Bouchie, JL; Feener, EP

  • CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload

    Fontes, MS; Kessler, EL; van Stuijvenberg, L; Brans, MA; Falke, LL; Kok, B; Leask, A; van Rijen, HV; Vos, MA; Goldschmeding, R; van Veen, TA

  • A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation

    Fornasa, G; Clement, M; Groyer, E; Gaston, AT; Khallou-Laschet, J; Morvan, M; Guedj, K; Kaveri, SV; Tedgui, A; Michel, JB; Nicoletti, A; Caligiuri, G

  • Caveolin-1 Deletion Prevents Hypertensive Vascular Remodeling Induced by Angiotensin II

    Forrester, SJ; Elliott, KJ; Kawai, T; Obama, T; Boyer, MJ; Preston, KJ; Yan, Z; Eguchi, S; Rizzo, V

  • Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System

    Forrester, SJ; Kawai, T; O’Brien, S; Thomas, W; Harris, RC; Eguchi, S

  • The angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis: a potential target for treating thrombotic diseases

    Fraga-Silva, RA; Da Silva, DG; Montecucco, F; Mach, F; Stergiopulos, N; da Silva, RF; Santos, RA

  • Pathophysiological role of the renin-angiotensin system on erectile dysfunction

    Fraga-Silva, RA; Montecucco, F; Mach, F; Santos, RA; Stergiopulos, N

  • Inflamm-aging. An evolutionary perspective on immunosenescence

    Franceschi, C; Bonafè, M; Valensin, S; Olivieri, F; De Luca, M; Ottaviani, E; De Benedictis, G

  • Challenges and Opportunities in Linking Long Noncoding RNAs to Cardiovascular, Lung, and Blood Diseases

    Freedman, JE; Miano, JM

  • Requirement of nuclear factor-kappaB in angiotensin II- and isoproterenol-induced cardiac hypertrophy in vivo

    Freund, C; Schmidt-Ullrich, R; Baurand, A; Dunger, S; Schneider, W; Loser, P; El-Jamali, A; Dietz, R; Scheidereit, C; Bergmann, MW

  • Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling

    Frieler, RA; Mortensen, RM

  • Vascular Smooth Muscle Sirtuin-1 Protects Against Aortic Dissection During Angiotensin II-Induced Hypertension

    Fry, JL; Shiraishi, Y; Turcotte, R; Yu, X; Gao, YZ; Akiki, R; Bachschmid, M; Zhang, Y; Morgan, KG; Cohen, RA; Seta, F

  • The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation

    Fuentes, P; Acuña, MJ; Cifuentes, M; Rojas, CV

  • Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension

    Furuhashi, M; Ura, N; Higashiura, K; Murakami, H; Tanaka, M; Moniwa, N; Yoshida, D; Shimamoto, K

  • Blockade of the renin-angiotensin system decreases adipocyte size with improvement in insulin sensitivity

    Furuhashi, M; Ura, N; Takizawa, H; Yoshida, D; Moniwa, N; Murakami, H; Higashiura, K; Shimamoto, K

  • Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor

    Gáborik, Z; Szaszák, M; Szidonya, L; Balla, B; Paku, S; Catt, KJ; Clark, AJ; Hunyady, L

  • Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis

    Gallo, EM; Loch, DC; Habashi, JP; Calderon, JF; Chen, Y; Bedja, D; van Erp, C; Gerber, EE; Parker, SJ; Sauls, K; Judge, DP; Cooke, SK; Lindsay, ME; Rouf, R; Myers, L; ap Rhys, CM; Kent, KC; Norris, RA; Huso, DL; Dietz, HC

  • Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue

    Gálvez-Prieto, B; Bolbrinker, J; Stucchi, P; de Las Heras, AI; Merino, B; Arribas, S; Ruiz-Gayo, M; Huber, M; Wehland, M; Kreutz, R; Fernandez-Alfonso, MS

  • Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes

    Gao, B-B; Phipps, JA; Bursell, D; Clermont, AC; Feener, EP

  • Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome

    Gao, BB; Stuart, L; Feener, EP

  • Rosiglitzone suppresses angiotensin II-induced production of KLF5 and cell proliferation in rat vascular smooth muscle cells

    Gao, D; Hao, G; Meng, Z; Ning, N; Yang, G; Liu, Z; Dong, X; Niu, X

  • Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice

    Gao, P; Xu, TT; Lu, J; Li, L; Xu, J; Hao, DL; Chen, HZ; Liu, DP

  • A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics

    García-Marqués, F; Trevisan-Herraz, M; Martínez-Martínez, S; Camafeita, E; Jorge, I; Lopez, JA; Méndez-Barbero, N; Méndez-Ferrer, S; Del Pozo, MA; Ibáñez, B; Andrés, V; Sánchez-Madrid, F; Redondo, JM; Bonzon-Kulichenko, E; Vázquez, J

  • NADPH oxidases and angiotensin II receptor signaling

    Garrido, AM; Griendling, KK

  • Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation

    Gassanov, N; Brandt, MC; Michels, G; Lindner, M; Er, F; Hoppe, UC

  • Decreased blood pressure in NOX1-deficient mice

    Gavazzi, G; Banfi, B; Deffert, C; Fiette, L; Schappi, M; Herrmann, F; Krause, KH

  • NOX1 deficiency protects from aortic dissection in response to angiotensin II

    Gavazzi, G; Deffert, C; Trocme, C; Schäppi, M; Herrmann, FR; Krause, KH

  • Angiotensin II-dependent hypertension causes reversible changes in the platelet proteome

    Gebhard, S; Steil, L; Peters, B; Gesell-Salazar, M; Hammer, E; Kuttler, B; Clemetson, KJ; Scharf, C; Peters, J; Völker, U; Rettig, R; Greinacher, A

  • A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation

    George, AJ; Purdue, BW; Gould, CM; Thomas, DW; Handoko, Y; Qian, H; Quaife-Ryan, GA; Morgan, KA; Simpson, KJ; Thomas, WG; Hannan, RD

  • Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts

    George, M; Vijayakumar, A; Dhanesh, SB; James, J; Shivakumar, K

  • Irbesartan administration therapeutically influences circulating endothelial progenitor cell and microparticle mobilization by involvement of pro-inflammatory cytokines

    Georgescu, A; Alexandru, N; Nemecz, M; Titorencu, I; Popov, D

  • The intrarenal generation of angiotensin II is required for experimental hypertension

    Giani, JF; Shah, KH; Khan, Z; Bernstein, EA; Shen, XZ; McDonough, AA; Gonzalez-Villalobos, RA; Bernstein, KE

  • Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II

    Gibbons, GH; Pratt, RE; Dzau, VJ

  • Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells

    Gildea, JJ; Wang, X; Shah, N; Tran, H; Spinosa, M; Van Sciver, R; Sasaki, M; Yatabe, J; Carey, RM; Jose, PA; Felder, RA

  • Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis

    Gimbrone, MA; García-Cardeña, G

  • MEF2 is regulated by CaMKIIδ2 and a HDAC4-HDAC5 heterodimer in vascular smooth muscle cells

    Ginnan, R; Sun, LY; Schwarz, JJ; Singer, HA

  • NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II

    Glass, MJ; Wang, G; Coleman, CG; Chan, J; Ogorodnik, E; Van Kempen, TA; Milner, TA; Butler, SD; Young, CN; Davisson, RL; Iadecola, C; Pickel, VM

  • Angiotensin II receptor blockade reduces tachycardia-induced atrial adhesion molecule expression

    Goette, A; Bukowska, A; Lendeckel, U; Erxleben, M; Hammwöhner, M; Strugala, D; Pfeiffenberger, J; Röhl, FW; Huth, C; Ebert, MP; Klein, HU; Röcken, C

  • Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation

    Goette, A; Staack, T; Röcken, C; Arndt, M; Geller, JC; Huth, C; Ansorge, S; Klein, HU; Lendeckel, U

  • Thoracic aortic aneurysm and dissection

    Goldfinger, JZ; Halperin, JL; Marin, ML; Stewart, AS; Eagle, KA; Fuster, V

  • Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation

    Gomolak, JR; Didion, SP

  • Role of extracellular superoxide dismutase in hypertension

    Gongora, MC; Qin, Z; Laude, K; Kim, HW; McCann, L; Folz, JR; Dikalov, S; f*ckai, T; Harrison, DG

  • Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice

    Gonzalez, AD; Wang, G; Waters, EM; Gonzales, KL; Speth, RC; Van Kempen, TA; Marques-Lopes, J; Young, CN; Butler, SD; Davisson, RL; Iadecola, C; Pickel, VM; Pierce, JP; Milner, TA

  • The emerging role of autophagy in the pathophysiology of diabetes mellitus

    Gonzalez, CD; Lee, MS; Marchetti, P; Pietropaolo, M; Towns, R; Vaccaro, MI; Watada, H; Wiley, JW

  • Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension

    González, GE; Rhaleb, NE; D’Ambrosio, MA; Nakagawa, P; Liu, Y; Leung, P; Dai, X; Yang, XP; Peterson, EL; Carretero, OA

  • Angiotensin-II type 1 receptor (AT1R) and alpha-1D adrenoceptor form a heterodimer during pregnancy-induced hypertension

    González-Hernández, ML; Godínez-Hernández, D; Bobadilla-Lugo, RA; López-Sánchez, P

  • Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    González-Núñez, M; Riolobos, AS; Castellano, O; Fuentes-Calvo, I; de los Ángeles Sevilla, M; Oujo, B; Pericacho, M; Cruz-Gonzalez, I; Pérez-Barriocanal, F; ten Dijke, P; López-Novoa, JM

  • The absence of intrarenal ACE protects against hypertension

    Gonzalez-Villalobos, RA; Janjoulia, T; Fletcher, NK; Giani, JF; Nguyen, MT; Riquier-Brison, AD; Seth, DM; Fuchs, S; Eladari, D; Picard, N; Bachmann, S; Delpire, E; Peti-Peterdi, J; Navar, LG; Bernstein, KE; McDonough, AA

  • Angiotensin-converting enzyme-derived angiotensin II formation during angiotensin II-induced hypertension

    Gonzalez-Villalobos, RA; Satou, R; Seth, DM; Semprun-Prieto, LC; Katsurada, A; Kobori, H; Navar, LG

  • Angiotensin II type I and prostaglandin F2α receptors cooperatively modulate signaling in vascular smooth muscle cells

    Goupil, E; Fillion, D; Clément, S; Luo, X; Devost, D; Sleno, R; Pétrin, D; Saragovi, HU; Thorin, É; Laporte, SA; Hébert, TE

  • Update on new aspects of the renin-angiotensin system in liver disease: clinical implications and new therapeutic options

    Grace, JA; Herath, CB; Mak, KY; Burrell, LM; Angus, PW

  • Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells

    Griendling, KK; Minieri, CA; Ollerenshaw, JD; Alexander, RW

  • Angiotensin II signaling in vascular smooth muscle. New concepts

    Griendling, KK; Ushio-f*ckai, M; Lassègue, B; Alexander, RW

  • Low glial angiotensinogen improves body habitus, diastolic function, and exercise tolerance in aging male rats

    Groban, L; Wang, H; Machado, FS; Trask, AJ; Kritchevsky, SB; Ferrario, CM; Diz, DI

  • The brain Renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance

    Grobe, JL; Grobe, CL; Beltz, TG; Westphal, SG; Morgan, DA; Xu, D; de Lange, WJ; Li, H; Sakai, K; Thedens, DR; Cassis, LA; Rahmouni, K; Mark, AL; Johnson, AK; Sigmund, CD

  • An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy

    Grobe, JL; Xu, D; Sigmund, CD

  • Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts

    Gu, J; Liu, X; Wang, QX; Tan, HW; Guo, M; Jiang, WF; Zhou, L

  • The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure

    Guilluy, C; Brégeon, J; Toumaniantz, G; Rolli-Derkinderen, M; Retailleau, K; Loufrani, L; Henrion, D; Scalbert, E; Bril, A; Torres, RM; Offermanns, S; Pacaud, P; Loirand, G

  • Development of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney

    Guo, DF; Chenier, I; Lavoie, JL; Chan, JS; Hamet, P; Tremblay, J; Chen, XM; Wang, DH; Inagami, T

  • Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane

    Guo, DF; Chenier, I; Tardif, V; Orlov, SN; Inagami, T

  • A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells

    Guo, DF; Tardif, V; Ghelima, K; Chan, JS; Ingelfinger, JR; Chen, X; Chenier, I

  • Role of angiotensin II type 1 receptor in angiotensin II-induced cytokine production in macrophages

    Guo, F; Chen, XL; Wang, F; Liang, X; Sun, YX; Wang, YJ

  • AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure

    Gurley, SB; Riquier-Brison, ADM; Schnermann, J; Sparks, MA; Allen, AM; Haase, VH; Snouwaert, JN; Le, TH; McDonough, AA; Koller, BH; Coffman, TM

  • Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction

    Guzik, TJ; Hoch, NE; Brown, KA; McCann, LA; Rahman, A; Dikalov, S; Goronzy, J; Weyand, C; Harrison, DG

  • Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism

    Habashi, JP; Doyle, JJ; Holm, TM; Aziz, H; Schoenhoff, F; Bedja, D; Chen, Y; Modiri, AN; Judge, DP; Dietz, HC

  • Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression

    Habibi, J; DeMarco, VG; Ma, L; Pulakat, L; Rainey, WE; Whaley-Connell, AT; Sowers, JR

  • Commercially available angiotensin II At2 receptor antibodies are nonspecific

    Hafko, R; Villapol, S; Nostramo, R; Symes, A; Sabban, EL; Inagami, T; Saavedra, JM

  • Reciprocal interaction between macrophages and T cells stimulates IFN-γ and MCP-1 production in Ang II-induced cardiac inflammation and fibrosis

    Han, YL; Li, YL; Jia, LX; Cheng, JZ; Qi, YF; Zhang, HJ; Du, J

  • Inhibition of Notch1 signaling reduces abdominal aortic aneurysm in mice by attenuating macrophage-mediated inflammation

    Hans, CP; Koenig, SN; Huang, N; Cheng, J; Beceiro, S; Guggilam, A; Kuivaniemi, H; Partida-Sánchez, S; Garg, V

  • Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial

    Hansson, L; Lindholm, LH; Niskanen, L; Lanke, J; Hedner, T; Niklason, A; Luomanmäki, K; Dahlöf, B; de Faire, U; Mörlin, C; Karlberg, BE; Wester, PO; Björck, JE

  • Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice

    Harada, K; Komuro, I; Shiojima, I; Hayashi, D; Kudoh, S; Mizuno, T; Kijima, K; Matsubara, H; Sugaya, T; Murakami, K; Yazaki, Y

  • Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type 1a knockout mice

    Harada, K; Komuro, I; Zou, Y; Kudoh, S; Kijima, K; Matsubara, H; Sugaya, T; Murakami, K; Yazaki, Y

  • Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation

    Harada, M; Luo, X; Qi, XY; Tadevosyan, A; Maguy, A; Ordog, B; Ledoux, J; Kato, T; Naud, P; Voigt, N; Shi, Y; Kamiya, K; Murohara, T; Kodama, I; Tardif, J-C; Schotten, U; Van Wagoner, DR; Dobrev, D; Nattel, S

  • Free radical theory of aging: an update: increasing the functional life span

    Harman, D

  • Rapamycin fed late in life extends lifespan in genetically heterogeneous mice

    Harrison, DE; Strong, R; Sharp, ZD; Nelson, JF; Astle, CM; Flurkey, K; Nadon, NL; Wilkinson, JE; Frenkel, K; Carter, CS; Pahor, M; Javors, MA; Fernandez, E; Miller, RA

  • Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications

    Harvey, A; Montezano, AC; Lopes, RA; Rios, F; Touyz, RM

  • Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo

    Hasan, DM; Starke, RM; Gu, H; Wilson, K; Chu, Y; Chalouhi, N; Heistad, DD; Faraci, FM; Sigmund, CD

  • Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy

    Haudek, SB; Cheng, J; Du, J; Wang, Y; Hermosillo-Rodriguez, J; Trial, J; Taffet, GE; Entman, ML

  • Angiotensin peptides and their pleiotropic actions

    Haulica, I; Bild, W; Serban, DN

  • Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis

    Haznedaroglu, IC; Beyazit, Y

  • Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II

    He, P; Klein, J; Yun, CC

  • The NHERF1 PDZ1 domain and IRBIT interact and mediate the activation of Na+/H+ exchanger 3 by ANG II

    He, P; Zhao, L; No, YR; Karvar, S; Yun, CC

  • Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7

    He, X; Gao, X; Peng, L; Wang, S; Zhu, Y; Ma, H; Lin, J; Duan, DD

  • Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II

    He, Z; Zhang, X; Chen, C; Wen, Z; Hoopes, SL; Zeldin, DC; Wang, DW

  • Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis

    Healey, JS; Baranchuk, A; Crystal, E; Morillo, CA; Garfinkle, M; Yusuf, S; Connolly, SJ

  • Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc

    Heeneman, S; Haendeler, J; Saito, Y; Ishida, M; Berk, BC

  • Disruption of vascular Ca2+-activated chloride currents lowers blood pressure

    Heinze, C; Seniuk, A; Sokolov, MV; Huebner, AK; Klementowicz, AE; Szijártó, IA; Schleifenbaum, J; Vitzthum, H; Gollasch, M; Ehmke, H; Schroeder, BC; Hübner, CA

  • Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules

    Heiss, C; Spyridopoulos, I; Haendeler, J

  • The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle

    Henriksen, EJ; Prasannarong, M

  • Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways

    Herbert, KE; Mistry, Y; Hastings, R; Poolman, T; Niklason, L; Williams, B

  • Murine pressure overload models: a 30-MHz look brings a whole new “sound” into data interpretation

    Hermans, H; Swinnen, M; Pokreisz, P; Caluwé, E; Dymarkowski, S; Herregods, MC; Janssens, S; Herijgers, P

  • Local Renin-Angiotensin system in the reproductive system

    Herr, D; Bekes, I; Wulff, C

  • Lack of specificity of commercial antibodies leads to misidentification of angiotensin type 1 receptor protein

    Herrera, M; Sparks, MA; Alfonso-Pecchio, AR; Harrison-Bernard, LM; Coffman, TM

  • Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications

    Higashi, Y; Maruhashi, T; Noma, K; Kihara, Y

  • Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology

    Higuchi, S; Ohtsu, H; Suzuki, H; Shirai, H; Frank, GD; Eguchi, S

  • Increased PDZ-RhoGEF/RhoA/Rho kinase signaling in small mesenteric arteries of angiotensin II-induced hypertensive rats

    Hilgers, RH; Todd, J; Webb, RC

  • Angiotensin type 1a receptors in the subfornical organ are required for deoxycorticosterone acetate-salt hypertension

    Hilzendeger, AM; Cassell, MD; Davis, DR; Stauss, HM; Mark, AL; Grobe, JL; Sigmund, CD

  • A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity

    Hilzendeger, AM; Morgan, DA; Brooks, L; Dellsperger, D; Liu, X; Grobe, JL; Rahmouni, K; Sigmund, CD; Mark, AL

  • Physiological roles for the subfornical organ: a dynamic transcriptome shaped by autonomic state

    Hindmarch, CC; Ferguson, AV

  • p21-activated kinase 1 participates in vascular remodeling in vitro and in vivo

    Hinoki, A; Kimura, K; Higuchi, S; Eguchi, K; Takaguri, A; Ishimaru, K; Frank, GD; Gerthoffer, WT; Sommerville, LJ; Autieri, MV; Eguchi, S

  • Serum angiotensin-converting enzyme 2 concentration and angiotensin-(1-7) concentration in patients with acute heart failure patients requiring emergency hospitalization

    Hisatake, S; Kiuchi, S; Kabuki, T; Oka, T; Dobashi, S; Ikeda, T

  • Sodium sensing in the subfornical organ and body-fluid homeostasis

    Hiyama, TY; Noda, M

  • Regulation of T-cell function by endogenously produced angiotensin II

    Hoch, NE; Guzik, TJ; Chen, W; Deans, T; Maalouf, SA; Gratze, P; Weyand, C; Harrison, DG

  • G Protein-coupled Receptor Biased Agonism

    Hodavance, SY; Gareri, C; Torok, RD; Rockman, HA

  • Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling

    Holopainen, T; Räsänen, M; Anisimov, A; Tuomainen, T; Zheng, W; Tvorogov, D; Hulmi, JJ; Andersson, LC; Cenni, B; Tavi, P; Mervaala, E; Kivelä, R; Alitalo, K

  • Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension

    Hong, K; Li, M; Nourian, Z; Meininger, GA; Hill, MA

  • The WNK kinase network regulating sodium, potassium, and blood pressure

    Hoorn, EJ; Nelson, JH; McCormick, JA; Ellison, DH

  • Role of angiotensin II receptor subtype activation in cognitive function and ischaemic brain damage

    Horiuchi, M; Mogi, M

  • Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain

    Horwath, JA; Hurr, C; Butler, SD; Guruju, M; Cassell, MD; Mark, AL; Davisson, RL; Young, CN

  • Inflammation and metabolic disorders

    Hotamisligil, GS

  • Leukocyte Calpain Deficiency Reduces Angiotensin II-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice

    Howatt, DA; Balakrishnan, A; Moorleghen, JJ; Muniappan, L; Rateri, DL; Uchida, HA; Takano, J; Saido, TC; Chishti, AH; Baud, L; Subramanian, V

  • A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity

    Howitt, MR; Garrett, WS

  • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan

    Howitz, KT; Bitterman, KJ; Cohen, HY; Lamming, DW; Lavu, S; Wood, JG; Zipkin, RE; Chung, P; Kisielewski, A; Zhang, LL; Scherer, B; Sinclair, DA

  • Retinol-binding protein 7 is an endothelium-specific PPARγ cofactor mediating an antioxidant response through adiponectin

    Hu, C; Keen, HL; Lu, KT; Liu, X; Wu, J; Davis, DR; Ibeawuchi, SC; Vogel, S; Quelle, FW; Sigmund, CD

  • Interference with PPARγ in endothelium accelerates angiotensin II-induced endothelial dysfunction

    Hu, C; Lu, KT; Mukohda, M; Davis, DR; Faraci, FM; Sigmund, CD

  • ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation

    Huang, CY; Kuo, WW; Yeh, YL; Ho, TJ; Lin, JY; Lin, DY; Chu, CH; Tsai, FJ; Tsai, CH; Huang, CY

  • miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity

    Huang, J; Sun, W; Huang, H; Ye, J; Pan, W; Zhong, Y; Cheng, C; You, X; Liu, B; Xiong, L; Liu, S

  • Angiotensin-converting enzyme-induced activation of local angiotensin signaling is required for ascending aortic aneurysms in fibulin-4-deficient mice

    Huang, J; Yamashiro, Y; Papke, CL; Ikeda, Y; Lin, Y; Patel, M; Inagami, T; Le, VP; Wagenseil, JE; Yanagisawa, H

  • Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling

    Huang, XR; Chung, AC; Yang, F; Yue, W; Deng, C; Lau, CP; Tse, HF; Lan, HY

  • Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis

    Huang, Y; Di Lorenzo, A; Jiang, W; Cantalupo, A; Sessa, WC; Giordano, FJ

  • Cardiac-specific Traf2 overexpression enhances cardiac hypertrophy through activating AKT/GSK3β signaling

    Huang, Y; Wu, D; Zhang, X; Jiang, M; Hu, C; Lin, J; Tang, J; Wu, L

  • Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats

    Huber, MJ; Basu, R; Cecchettini, C; Cuadra, AE; Chen, QH; Shan, Z

  • A novel small molecule TLR4 antagonist (IAXO-102) negatively regulates non-hematopoietic toll like receptor 4 signalling and inhibits aortic aneurysms development

    Huggins, C; Pearce, S; Peri, F; Neumann, F; co*ckerill, G; Pirianov, G

  • Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways

    Huynh, K; Bernardo, BC; McMullen, JR; Ritchie, RH

  • Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors

    Ibeawuchi, SR; Agbor, LN; Quelle, FW; Sigmund, CD

  • Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension

    Ichihara, S; Senbonmatsu, T; Price, E; Ichiki, T; Gaffney, FA; Inagami, T

  • Regulation of angiotensin II receptor expression

    Ichiki, T

  • Deletion of NF-κB/RelA in Angiotensin II-Sensitive Mesenchymal Cells Blocks Aortic Vascular Inflammation and Abdominal Aortic Aneurysm Formation

    Ijaz, T; Sun, H; Pinchuk, IV; Milewicz, DM; Tilton, RG; Brasier, AR

  • Biased Agonism of the Angiotensin II Type I Receptor

    Ikeda, Y; Kumagai, H; Motozawa, Y; Suzuki, J; Komuro, I

  • Smooth muscle cell-specific Hif-1α deficiency suppresses angiotensin II-induced vascular remodelling in mice

    Imanishi, M; Tomita, S; Ishizawa, K; Kihira, Y; Ueno, M; Izawa-Ishizawa, Y; Ikeda, Y; Yamano, N; Tsuchiya, K; Tamaki, T

  • Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice

    Inaba, S; Iwai, M; Furuno, M; Tomono, Y; Kanno, H; Senba, I; Okayama, H; Mogi, M; Higaki, J; Horiuchi, M

  • Attenuation of ligand-induced activation of angiotensin II type 1 receptor signaling by the type 2 receptor via protein kinase C

    Inuzuka, T; Fujioka, Y; Tsuda, M; Fujioka, M; Satoh, AO; Horiuchi, K; Nishide, S; Nanbo, A; Tanaka, S; Ohba, Y

  • Angiotensin II type 1 receptor expression in astrocytes is upregulated leading to increased mortality in mice with myocardial infarction-induced heart failure

    Isegawa, K; Hirooka, Y; Katsuki, M; Kishi, T; Sunagawa, K

  • Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling

    Ishibashi, M; Hiasa, K; Zhao, Q; Inoue, S; Ohtani, K; Kitamoto, S; Tsuchihashi, M; Sugaya, T; Charo, IF; Kura, S; Tsuzuki, T; Ishibashi, T; Takesh*ta, A; Egashira, K

  • Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation

    Ishizaka, N; Griendling, KK; Lassègue, B; Alexander, RW

  • Thoracic and abdominal aortic aneurysms

    Isselbacher, EM

  • Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension

    Itani, HA; Dikalova, AE; McMaster, WG; Nazarewicz, RR; Bikineyeva, AT; Harrison, DG; Dikalov, SI

  • Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans

    Itani, HA; McMaster, WG; Saleh, MA; Nazarewicz, RR; Mikolajczyk, TP; Kaszuba, AM; Konior, A; Prejbisz, A; Januszewicz, A; Norlander, AE; Chen, W; Bonami, RH; Marshall, AF; Poffenberger, G; Weyand, CM; Madhur, MS; Moore, DJ; Harrison, DG; Guzik, TJ

  • CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli

    Itani, HA; Xiao, L; Saleh, MA; Wu, J; Pilkinton, MA; Dale, BL; Barbaro, NR; Foss, JD; Kirabo, A; Montaniel, KR; Norlander, AE; Chen, W; Sato, R; Navar, LG; Mallal, SA; Madhur, MS; Bernstein, KE; Harrison, DG

  • Identification of the Mtus1 Splice Variant as a Novel Inhibitory Factor Against Cardiac Hypertrophy

    Ito, S; Asakura, M; Liao, Y; Min, KD; Takahashi, A; Shindo, K; Yamazaki, S; Tsukamoto, O; Asanuma, H; Mogi, M; Horiuchi, M; Asano, Y; Sanada, S; Minamino, T; Takashima, S; Mochizuki, N; Kitakaze, M

  • Atrial fibrillation pathophysiology: implications for management

    Iwasaki, YK; Nishida, K; Kato, T; Nattel, S

  • Transgenic Mice Overexpressing Human Angiotensin I Receptor Gene Are Susceptible to Stroke Injury

    Jain, S; Tulsulkar, J; Rana, A; Kumar, A; Shah, ZA

  • Stimulation of angiotensin type 1A receptors on catecholaminergic cells contributes to angiotensin-dependent hypertension

    Jancovski, N; Bassi, JK; Carter, DA; Choong, YT; Connelly, A; Nguyen, TP; Chen, D; Lukoshkova, EV; Menuet, C; Head, GA; Allen, AM

  • Mass-spectrometric identification of a novel angiotensin peptide in human plasma

    Jankowski, V; Vanholder, R; van der Giet, M; Tölle, M; Karadogan, S; Gobom, J; Furkert, J; Oksche, A; Krause, E; Tran, TN; Tepel, M; Schuchardt, M; Schlüter, H; Wiedon, A; Beyermann, M; Bader, M; Todiras, M; Zidek, W; Jankowski, J

  • Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance

    Jayasooriya, AP; Mathai, ML; Walker, LL; Begg, DP; Denton, DA; Cameron-Smith, D; Egan, GF; McKinley, MJ; Rodger, PD; Sinclair, AJ; Wark, JD; Weisinger, HS; Jois, M; Weisinger, RS

  • Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology

    Jennings, BL; Sahan-Firat, S; Estes, AM; Das, K; Farjana, N; Fang, XR; Gonzalez, FJ; Malik, KU

  • Loss of Resistance to Angiotensin II-Induced Hypertension in the Jackson Laboratory Recombination-Activating Gene Null Mouse on the C57BL/6J Background

    Ji, H; Pai, AV; West, CA; Wu, X; Speth, RC; Sandberg, K

  • Sex-specific T-cell regulation of angiotensin II-dependent hypertension

    Ji, H; Zheng, W; Li, X; Liu, J; Wu, X; Zhang, MA; Umans, JG; Hay, M; Speth, RC; Dunn, SE; Sandberg, K

  • The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling

    Ji, YX; Zhang, P; Zhang, XJ; Zhao, YC; Deng, KQ; Jiang, X; Wang, PX; Huang, Z; Li, H

  • Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy

    Jiang, DS; Bian, ZY; Zhang, Y; Zhang, SM; Liu, Y; Zhang, R; Chen, Y; Yang, Q; Zhang, XD; Fan, GC; Li, H

  • Interferon regulatory factor 7 functions as a novel negative regulator of pathological cardiac hypertrophy

    Jiang, DS; Liu, Y; Zhou, H; Zhang, Y; Zhang, XD; Zhang, XF; Chen, K; Gao, L; Peng, J; Gong, H; Chen, Y; Yang, Q; Liu, PP; Fan, GC; Zou, Y; Li, H

  • Signal regulatory protein-α protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling

    Jiang, DS; Zhang, XF; Gao, L; Zong, J; Zhou, H; Liu, Y; Zhang, Y; Bian, ZY; Zhu, LH; Fan, GC; Zhang, XD; Li, H

  • Identification of Amino Acid Residues in Angiotensin II Type 1 Receptor Sensing Mechanical Stretch and Function in Cardiomyocyte Hypertrophy

    Jiang, G; Gong, H; Niu, Y; Yang, C; Wang, S; Chen, Z; Ye, Y; Zhou, N; Zhang, G; Ge, J; Zou, Y

  • Increased aortic calpain-1 activity mediates age-associated angiotensin II signaling of vascular smooth muscle cells

    Jiang, L; Wang, M; Zhang, J; Monticone, RE; Telljohann, R; Spinetti, G; Pintus, G; Lakatta, EG

  • Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria

    Jiang, L; Xu, L; Song, Y; Li, J; Mao, J; Zhao, AZ; He, W; Yang, J; Dai, C

  • Losartan reverses the down-expression of long noncoding RNA-NR024118 and Cdkn1c induced by angiotensin II in adult rat cardiac fibroblasts

    Jiang, X; Zhang, F; Ning, Q

  • Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts

    Jiang, XY; Ning, QL

  • Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells

    Jin, W; Reddy, MA; Chen, Z; Putta, S; Lanting, L; Kato, M; Park, JT; Chandra, M; Wang, C; Tangirala, RK; Natarajan, R

  • Effect of angiotensin II type 2 receptor-interacting protein on adipose tissue function via modulation of macrophage polarization

    Jing, F; Mogi, M; Min, L-J; Ohshima, K; Nakaoka, H; Tsukuda, K; Wang, X; Iwanami, J; Horiuchi, M

  • Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt

    Jo, F; Jo, H; Hilzendeger, AM; Thompson, AP; Cassell, MD; Rutkowski, DT; Davisson, RL; Grobe, JL; Sigmund, CD

  • Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase

    Johar, S; Cave, AC; Narayanapanicker, A; Grieve, DJ; Shah, AM

  • Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells

    Jones, BH; Standridge, MK; Moustaid, N

  • Interleukin-6-signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17-interleukin 17 axis in C57BL/6 mice

    Ju, X; Ijaz, T; Sun, H; Ray, S; Lejeune, W; Lee, C; Recinos, A; Guo, DC; Milewicz, DM; Tilton, RG; Brasier, AR

  • Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation

    Jurewicz, M; McDermott, DH; Sechler, JM; Tinckam, K; Takakura, A; Carpenter, CB; Milford, E; Abdi, R

  • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms

    Kaeberlein, M; McVey, M; Guarente, L

  • Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance

    Kalupahana, NS; Massiera, F; Quignard-Boulange, A; Ailhaud, G; Voy, BH; Wasserman, DH; Moustaid-Moussa, N

  • Renal transporter activation during angiotensin II hypertension is blunted in IFN-γ(−/−) and IL-17A (−/−) mice

    Kamat, NV; Thabet, SR; Xiao, L; Saleh, MA; Kirabo, A; Madhur, MS; Delpire, E; Harrison, DG; McDonough, AA

  • Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition

    Kambayashi, Y; Bardhan, S; Takahashi, K; Tsuzuki, S; Inui, H; Hamakubo, T; Inagami, T

  • Critical roles of macrophages in the formation of intracranial aneurysm

    Kanematsu, Y; Kanematsu, M; Kurihara, C; Tada, Y; Tsou, TL; van Rooijen, N; Lawton, MT; Young, WL; Liang, EI; Nuki, Y; Hashimoto, T

  • Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats

    Kaneshiro, Y; Ichihara, A; Sakoda, M; Takemitsu, T; Nabi, AH; Uddin, MN; Nakagawa, T; Nishiyama, A; Suzuki, F; Inagami, T; Itoh, H

  • Effects of telmisartan on lipid metabolisms and proinflammatory factors secretion of differentiated 3T3-L1 adipocytes

    Kang, C; Yijun, L; Jingtao, D; Changyu, P; Wenhua, Y; Baoan, W; Fangling, M; Xianling, W; Guoqing, Y; Yiming, M; Juming, L

  • Genetic lineage tracing defines myofibroblast origin and function in the injured heart

    Kanisicak, O; Khalil, H; Ivey, MJ; Karch, J; Maliken, BD; Correll, RN; Brody, MJ; J Lin, SC; Aronow, BJ; Tallquist, MD; Molkentin, JD

  • Heart failure and angiotensin II modulate atrial Pitx2c promotor methylation

    Kao, YH; Chen, YC; Chung, CC; Lien, GS; Chen, SA; Kuo, CC; Chen, YJ

  • Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway

    Kapahi, P; Zid, BM; Harper, T; Koslover, D; Sapin, V; Benzer, S

  • Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction

    Karbach, SH; Schönfelder, T; Brandão, I; Wilms, E; Hörmann, N; Jäckel, S; Schüler, R; Finger, S; Knorr, M; Lagrange, J; Brandt, M; Waisman, A; Kossmann, S; Schäfer, K; Münzel, T; Reinhardt, C; Wenzel, P

  • Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis

    Karnewar, S; Vasamsetti, SB; Gopoju, R; Kanugula, AK; Ganji, SK; Prabhakar, S; Rangaraj, N; Tupperwar, N; Kumar, JM; Kotamraju, S

  • Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22

    Karnik, SS; Singh, KD; Tirupula, K; Unal, H

  • International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli

    Karnik, SS; Unal, H; Kemp, JR; Tirupula, KC; Eguchi, S; Vanderheyden, PM; Thomas, WG

  • AT2 receptors targeting cardiac protection post-myocardial infarction

    Kaschina, E; Lauer, D; Schmerler, P; Unger, T; Steckelings, UM

  • Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction

    Kassan, M; Ait-Aissa, K; Radwan, E; Mali, V; Haddox, S; Gabani, M; Zhang, W; Belmadani, S; Irani, K; Trebak, M; Matrougui, K

  • Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice

    Kassan, M; Galán, M; Partyka, M; Saifudeen, Z; Henrion, D; Trebak, M; Matrougui, K

  • Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction

    Kassiri, Z; Zhong, J; Guo, D; Basu, R; Wang, X; Liu, PP; Scholey, JW; Penninger, JM; Oudit, GY

  • Targeted Ablation of Periostin-Expressing Activated Fibroblasts Prevents Adverse Cardiac Remodeling in Mice

    Kaur, H; Takefuji, M; Ngai, CY; Carvalho, J; Bayer, J; Wietelmann, A; Poetsch, A; Hoelper, S; Conway, SJ; Möllmann, H; Looso, M; Troidl, C; Offermanns, S; Wettschureck, N

  • Autophagy at the crossroads of catabolism and anabolism

    Kaur, J; Debnath, J

  • Intratracheal administration of a nanoparticle-based therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth

    Kawabata, A; Baoum, A; Ohta, N; Jacquez, S; Seo, GM; Berkland, C; Tamura, M

  • AT1 receptor signaling pathways in the cardiovascular system

    Kawai, T; Forrester, SJ; O’Brien, S; Baggett, A; Rizzo, V; Eguchi, S

  • Vascular ADAM17 (a Disintegrin and Metalloproteinase Domain 17) Is Required for Angiotensin II/β-Aminopropionitrile-Induced Abdominal Aortic Aneurysm

    Kawai, T; Takayanagi, T; Forrester, SJ; Preston, KJ; Obama, T; Tsuji, T; Kobayashi, T; Boyer, MJ; Cooper, HA; Kwok, HF; Hashimoto, T; Scalia, R; Rizzo, V; Eguchi, S

  • Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts

    Kawano, H; Cody, RJ; Graf, K; Goetze, S; Kawano, Y; Schnee, J; Law, RE; Hsueh, WA

  • Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II

    Kawano, S; Kubota, T; Monden, Y; Kawamura, N; Tsutsui, H; Takesh*ta, A; Sunagawa, K

  • Angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation

    Kawarazaki, W; Nagase, M; Yoshida, S; Takeuchi, M; Ishizawa, K; Ayuzawa, N; Ueda, K; Fujita, T

  • The Ca(2+)-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy

    Kecskés, M; Jacobs, G; Kerselaers, S; Syam, N; Menigoz, A; Vangheluwe, P; Freichel, M; Flockerzi, V; Voets, T; Vennekens, R

  • Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy

    Kee, HJ; Eom, GH; Joung, H; Shin, S; Kim, JR; Cho, YK; Choe, N; Sim, BW; Jo, D; Jeong, MH; Kim, KK; Seo, JS; Kook, H

  • Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding

    Kee, HJ; Sohn, IS; Nam, KI; Park, JE; Qian, YR; Yin, Z; Ahn, Y; Jeong, MH; Bang, YJ; Kim, N; Kim, JK; Kim, KK; Epstein, JA; Kook, H

  • Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth

    Kehat, I; Davis, J; Tiburcy, M; Accornero, F; Saba-El-Leil, MK; Maillet, M; York, AJ; Lorenz, JN; Zimmermann, WH; Meloche, S; Molkentin, JD

  • AT2 receptor activation induces natriuresis and lowers blood pressure

    Kemp, BA; Howell, NL; Gildea, JJ; Keller, SR; Padia, SH; Carey, RM

  • AT2 Receptor Activation Prevents Sodium Retention and Reduces Blood Pressure in Angiotensin II-Dependent Hypertension

    Kemp, BA; Howell, NL; Keller, SR; Gildea, JJ; Padia, SH; Carey, RM

  • Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system

    Kemp, JR; Unal, H; Desnoyer, R; Yue, H; Bhatnagar, A; Karnik, SS

  • Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis

    Kendall, RT; Lee, MH; Pleasant, DL; Robinson, K; Kuppuswamy, D; McDermott, PJ; Luttrell, LM

  • The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network

    Kendall, RT; Strungs, EG; Rachidi, SM; Lee, MH; El-Shewy, HM; Luttrell, DK; Janech, MG; Luttrell, LM

  • Adaptive Response of T and B Cells in Atherosclerosis

    Ketelhuth, DF; Hansson, GK

  • PPARγ regulates resistance vessel tone through a mechanism involving RGS5-mediated control of protein kinase C and BKCa channel activity

    Ketsawatsomkron, P; Lorca, RA; Keen, HL; Weatherford, ET; Liu, X; Pelham, CJ; Grobe, JL; Faraci, FM; England, SK; Sigmund, CD

  • Cytosolic phospholipase A2α is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology

    Khan, NS; Song, CY; Jennings, BL; Estes, AM; Fang, XR; Bonventre, JV; Malik, KU

  • Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β

    Khan, SA; Dong, H; Joyce, J; Sasaki, T; Chu, ML; Tsuda, T

  • Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils

    Khan, Z; Shen, XZ; Bernstein, EA; Giani, JF; Eriguchi, M; Zhao, TV; Gonzalez-Villalobos, RA; Fuchs, S; Liu, GY; Bernstein, KE

  • The β3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II-infused C57BL/6 mice

    Kharade, SV; Sonkusare, SK; Srivastava, AK; Thakali, KM; Fletcher, TW; Rhee, SW; Rusch, NJ

  • NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice

    Kigawa, Y; Miyazaki, T; Lei, XF; Nakamachi, T; Oguchi, T; Kim-Kaneyama, JR; Taniyama, M; Tsunawaki, S; Shioda, S; Miyazaki, A

  • Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice

    Kim, CW; Kumar, S; Son, DJ; Jang, IH; Griendling, KK; Jo, H

  • Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension

    Kim, GR; Cho, SN; Kim, HS; Yu, SY; Choi, SY; Ryu, Y; Lin, MQ; Jin, L; Kee, HJ; Jeong, MH

  • Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation

    Kim, JA; Jang, HJ; Martinez-Lemus, LA; Sowers, JR

  • Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases

    Kim, S; Iwao, H

  • Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells

    Kim, S; Zingler, M; Harrison, JK; Scott, EW; Cogle, CR; Luo, D; Raizada, MK

  • Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II

    Kimura, S; Zhang, GX; Nishiyama, A; Shokoji, T; Yao, L; Fan, YY; Rahman, M; Suzuki, T; Maeta, H; Abe, Y

  • Interferon-gamma and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture

    King, VL; Lin, AY; Kristo, F; Anderson, TJ; Ahluwalia, N; Hardy, GJ; Owens, AP; Howatt, DA; Shen, D; Tager, AM; Luster, AD; Daugherty, A; Gerszten, RE

  • DC isoketal-modified proteins activate T cells and promote hypertension

    Kirabo, A; Fontana, V; de Faria, AP; Loperena, R; Galindo, CL; Wu, J; Bikineyeva, AT; Dikalov, S; Xiao, L; Chen, W; Saleh, MA; Trott, DW; Itani, HA; Vinh, A; Amarnath, V; Amarnath, K; Guzik, TJ; Bernstein, KE; Shen, XZ; Shyr, Y; Chen, SC; Mernaugh, RL; Laffer, CL; Elijovich, F; Davies, SS; Moreno, H; Madhur, MS; Roberts, J; Harrison, DG

  • Vascular smooth muscle Jak2 mediates angiotensin II-induced hypertension via increased levels of reactive oxygen species

    Kirabo, A; Kearns, PN; Jarajapu, YP; Sasser, JM; Oh, SP; Grant, MB; Kasahara, H; Cardounel, AJ; Baylis, C; Wagner, K-U; Sayeski, PP

  • Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy

    Kishore, R; Krishnamurthy, P; Garikipati, VN; Benedict, C; Nickoloff, E; Khan, M; Johnson, J; Gumpert, AM; Koch, WJ; Verma, SK

  • Urea transporter UT-A1 and aquaporin-2 proteins decrease in response to angiotensin II or norepinephrine-induced acute hypertension

    Klein, JD; Murrell, BP; Tucker, S; Kim, YH; Sands, JM

  • The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease

    Kobori, H; Nangaku, M; Navar, LG; Nishiyama, A

  • Essential role of angiotensin II type 1a receptors in the host vascular wall, but not the bone marrow, in the pathogenesis of angiotensin II-induced atherosclerosis

    Koga, J; Egashira, K; Matoba, T; Kubo, M; Ihara, Y; Iwai, M; Horiuchi, M; Sunagawa, K

  • Angiotensin-converting enzyme (ACE) inhibitors modulate cellular retinol-binding protein 1 and adiponectin expression in adipocytes via the ACE-dependent signaling cascade

    Kohlstedt, K; Gershome, C; Trouvain, C; Hofmann, WK; Fichtlscherer, S; Fleming, I

  • Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype

    Kohlstedt, K; Trouvain, C; Namgaladze, D; Fleming, I

  • Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy

    Kolwicz, SC; Olson, DP; Marney, LC; Garcia-Menendez, L; Synovec, RE; Tian, R

  • Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke

    Kono, S; Kurata, T; Sato, K; Omote, Y; Hishikawa, N; Yamash*ta, T; Deguchi, K; Abe, K

  • Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC)

    Konvalinka, A; Zhou, J; Dimitromanolakis, A; Drabovich, AP; Fang, F; Gurley, S; Coffman, T; John, R; Zhang, SL; Diamandis, EP; Scholey, JW

  • Endothelial metabolism of angiotensin II to angiotensin III, not angiotensin (1-7), augments the vasorelaxation response in adrenal cortical arteries

    Kopf, PG; Campbell, WB

  • Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II

    Kossmann, S; Hu, H; Steven, S; Schönfelder, T; Fraccarollo, D; Mikhed, Y; Brähler, M; Knorr, M; Brandt, M; Karbach, SH; Becker, C; Oelze, M; Bauersachs, J; Widder, J; Münzel, T; Daiber, A; Wenzel, P

  • Angiotensin II-induced vascular dysfunction depends on interferon-γ-driven immune cell recruitment and mutual activation of monocytes and NK-cells

    Kossmann, S; Schwenk, M; Hausding, M; Karbach, SH; Schmidgen, MI; Brandt, M; Knorr, M; Hu, H; Kröller-Schön, S; Schönfelder, T; Grabbe, S; Oelze, M; Daiber, A; Münzel, T; Becker, C; Wenzel, P

  • G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor

    Kostenis, E; Milligan, G; Christopoulos, A; Sanchez-Ferrer, CF; Heringer-Walther, S; Sexton, PM; Gembardt, F; Kellett, E; Martini, L; Vanderheyden, P; Schultheiss, HP; Walther, T

  • AT2R agonist, compound 21, is reno-protective against type 1 diabetic nephropathy

    Koulis, C; Chow, BS; McKelvey, M; Steckelings, UM; Unger, T; Thallas-Bonke, V; Thomas, MC; Cooper, ME; Jandeleit-Dahm, KA; Allen, TJ

  • Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy

    Kourembanas, S

  • Deficiency of the interleukin 17/23 axis accelerates renal injury in mice with deoxycorticosterone acetate+angiotensin ii-induced hypertension

    Krebs, CF; Lange, S; Niemann, G; Rosendahl, A; Lehners, A; Meyer-Schwesinger, C; Stahl, RA; Benndorf, RA; Velden, J; Paust, HJ; Panzer, U; Ehmke, H; Wenzel, UO

  • Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin II-Induced Aortic Aneurysm and Atherosclerosis

    Krishna, SM; Seto, SW; Jose, RJ; Li, J; Morton, SK; Biros, E; Wang, Y; Nsengiyumva, V; Lindeman, JH; Loots, GG; Rush, CM; Craig, JM; Golledge, J

  • Peroxisome proliferator-activated receptor γ, coactivator 1α deletion induces angiotensin II-associated vascular dysfunction by increasing mitochondrial oxidative stress and vascular inflammation

    Kröller-Schön, S; Jansen, T; Schüler, A; Oelze, M; Wenzel, P; Hausding, M; Kerahrodi, JG; Beisele, M; Lackner, KJ; Daiber, A; Münzel, T; Schulz, E

  • PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance

    Kubota, N; Terauchi, Y; Miki, H; Tamemoto, H; Yamauchi, T; Komeda, K; Satoh, S; Nakano, R; Ishii, C; Sugiyama, T; Eto, K; Tsubamoto, Y; Okuno, A; Murakami, K; Sekihara, H; Hasegawa, G; Naito, M; Toyoshima, Y; Tanaka, S; Shiota, K; Kitamura, T; Fujita, T; Ezaki, O; Aizawa, S; Kadowaki, T

  • Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation

    Kumagai, K; Nakashima, H; Urata, H; Gondo, N; Arakawa, K; Saku, K

  • The intracrine renin-angiotensin system

    Kumar, R; Thomas, CM; Yong, QC; Chen, W; Baker, KM

  • Intracardiac intracellular angiotensin system in diabetes

    Kumar, R; Yong, QC; Thomas, CM; Baker, KM

  • Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway

    Kunieda, T; Minamino, T; Nishi, J; Tateno, K; Oyama, T; Katsuno, T; Miyauchi, H; Orimo, M; Okada, S; Takamura, M; Nagai, T; Kaneko, S; Komuro, I

  • New take on the role of angiotensin II in cardiac hypertrophy and fibrosis

    Kurdi, M; Booz, GW

  • Three 4-letter words of hypertension-related cardiac hypertrophy: TRPC, mTOR, and HDAC

    Kurdi, M; Booz, GW

  • Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection

    Kurihara, T; Shimizu-Hirota, R; Shimoda, M; Adachi, T; Shimizu, H; Weiss, SJ; Itoh, H; Hori, S; Aikawa, N; Okada, Y

  • Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis

    Kurisu, S; Ozono, R; Oshima, T; Kambe, M; Ishida, T; Sugino, H; Matsuura, H; Chayama, K; Teranishi, Y; Iba, O; Amano, K; Matsubara, H

  • Suppression of aging in mice by the hormone Klotho

    Kurosu, H; Yamamoto, M; Clark, JD; Pastor, JV; Nandi, A; Gurnani, P; McGuinness, OP; Chikuda, H; Yamaguchi, M; Kawaguchi, H; Shimomura, I; Takayama, Y; Herz, J; Kahn, CR; Rosenblatt, KP; Kuro-o, M

  • Interleukin-10 deficiency aggravates angiotensin II-induced cardiac remodeling in mice

    Kwon, WY; Cha, HN; Heo, JY; Choi, JH; Jang, BI; Lee, IK; Park, SY

  • Vascular Tissue-Type Plasminogen Activator Promotes Intracranial Aneurysm Formation

    Labeyrie, PE; Goulay, R; Martinez de Lizarrondo, S; Hébert, M; Gauberti, M; Maubert, E; Delaunay, B; Gory, B; Signorelli, F; Turjman, F; Touzé, E; Courthéoux, P; Vivien, D; Orset, C

  • Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension

    Labiós, M; Martínez, M; Gabriel, F; Guiral, V; Munoz, A; Aznar, J

  • Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system

    Laczy, B; Hill, BG; Wang, K; Paterson, AJ; White, CR; Xing, D; Chen, YF; Darley-Usmar, V; Oparil, S; Chatham, JC

  • p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice

    Lai, EY; Solis, G; Luo, Z; Carlstrom, M; Sandberg, K; Holland, S; Wellstein, A; Welch, WJ; Wilcox, CS

  • Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure

    Lakshmikanthan, S; Zieba, BJ; Ge, ZD; Momotani, K; Zheng, X; Lund, H; Artamonov, MV; Maas, JE; Szabo, A; Zhang, DX; Auchampach, JA; Mattson, DL; Somlyo, AV; Chrzanowska-Wodnicka, M

  • Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2)

    Lambert, DW; Yarski, M; Warner, FJ; Thornhill, P; Parkin, ET; Smith, AI; Hooper, NM; Turner, AJ

  • Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II

    Landmesser, U; Cai, H; Dikalov, S; McCann, L; Hwang, J; Jo, H; Holland, SM; Harrison, DG

  • mTOR signaling in growth control and disease

    Laplante, M; Sabatini, DM

  • Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system

    Lassègue, B; San Martín, A; Griendling, KK

  • Salt, aldosterone, and insulin resistance: impact on the cardiovascular system

    Lastra, G; Dhuper, S; Johnson, MS; Sowers, JR

  • Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system

    Lastra, G; Sowers, JR

  • Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart

    Lauer, D; Slavic, S; Sommerfeld, M; Thöne-Reineke, C; Sharkovska, Y; Hallberg, A; Dahlöf, B; Kintscher, U; Unger, T; Steckelings, UM; Kaschina, E

  • Nox NADPH oxidases and the endoplasmic reticulum

    Laurindo, FR; Araujo, TL; Abrahão, TB

  • Discovery and characterization of alamandine: a novel component of the renin-angiotensin system

    Lautner, RQ; Villela, DC; Fraga-Silva, RA; Silva, N; Verano-Braga, T; Costa-Fraga, F; Jankowski, J; Jankowski, V; Sousa, F; Alzamora, A; Soares, E; Barbosa, C; Kjeldsen, F; Oliveira, A; Braga, J; Savergnini, S; Maia, G; Peluso, AB; Passos-Silva, D; Ferreira, A; Alves, F; Martins, A; Raizada, M; Paula, R; Motta-Santos, D; Klempin, F; Pimenta, A; Alenina, N; Sinisterra, R; Bader, M; Campagnole-Santos, MJ; Santos, RA

  • Autophagy in cardiovascular biology

    Lavandero, S; Chiong, M; Rothermel, BA; Hill, JA

  • Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model

    Lavoie, JL; Cassell, MD; Gross, KW; Sigmund, CD

  • Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model

    Lavoie, JL; Cassell, MD; Gross, KW; Sigmund, CD

  • Evidence supporting a functional role for intracellular renin in the brain

    Lavoie, JL; Liu, X; Bianco, RA; Beltz, TG; Johnson, AK; Sigmund, CD

  • Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system

    Lavoie, JL; Sigmund, CD

  • Angiotensin II contributes to renal fibrosis independently of Notch pathway activation

    Lavoz, C; Rodrigues-Diez, R; Benito-Martin, A; Rayego-Mateos, S; Rodrigues-Diez, RR; Alique, M; Ortiz, A; Mezzano, S; Egido, J; Ruiz-Ortega, M

  • Getting to the heart of the matter: new insights into cardiac fibrosis

    Leask, A

  • A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for angiotensin II plays an important role in receptor trafficking and signaling

    Leclerc, PC; Auger-Messier, M; Lanctot, PM; Escher, E; Leduc, R; Guillemette, G

  • S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II

    Leclerc, PC; Lanctot, PM; Auger-Messier, M; Escher, E; Leduc, R; Guillemette, G

  • Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species

    Lee, DY; Wauquier, F; Eid, AA; Roman, LJ; Ghosh-Choudhury, G; Khazim, K; Block, K; Gorin, Y

  • Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm

    Lee, S; Kim, IK; Ahn, JS; Woo, DC; Kim, ST; Song, S; Koh, GY; Kim, HS; Jeon, BH; Kim, I

  • Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor

    Lee, YJ; Song, IK; Jang, KJ; Nielsen, J; Frøkiaer, J; Nielsen, S; Kwon, TH

  • Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing

    Lee-Kirsch, MA; Gaudet, F; Cardoso, MC; Lindpaintner, K

  • Identification of Hic-5 as a novel scaffold for the MKK4/p54 JNK pathway in the development of abdominal aortic aneurysms

    Lei, XF; Kim-Kaneyama, JR; Arita-Okubo, S; Offermanns, S; Itabe, H; Miyazaki, T; Miyazaki, A

  • Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension

    Letavernier, E; Perez, J; Bellocq, A; Mesnard, L; de Castro Keller, A; Haymann, JP; Baud, L

  • Noncoding RNAs in vascular disease

    Leung, A; Natarajan, R

  • Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells

    Leung, A; Trac, C; Jin, W; Lanting, L; Akbany, A; Sætrom, P; Schones, DE; Natarajan, R

  • Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking

    Li, C; Wang, W; Rivard, CJ; Lanaspa, MA; Summer, S; Schrier, RW

  • Partial inhibition of activin receptor-like kinase 4 attenuates pressure overload-induced cardiac fibrosis and improves cardiac function

    Li, CY; Chen, YH; Wang, Q; Hou, JW; Wang, H; Wang, YP; Li, YG

  • Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway

    Li, CY; Zhou, Q; Yang, LC; Chen, YH; Hou, JW; Guo, K; Wang, YP; Li, YG

  • α7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity

    Li, DJ; Huang, F; Ni, M; Fu, H; Zhang, LS; Shen, FM

  • Regulator of G protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Li, H; He, C; Feng, J; Zhang, Y; Tang, Q; Bian, Z; Bai, X; Zhou, H; Jiang, H; Heximer, SP; Qin, M; Huang, H; Liu, PP; Huang, C

  • Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy

    Li, H; Li, W; Gupta, AK; Mohler, PJ; Anderson, ME; Grumbach, IM

  • Renal proximal tubule angiotensin AT1A receptors regulate blood pressure

    Li, H; Weatherford, ET; Davis, DR; Keen, HL; Grobe, JL; Daugherty, A; Cassis, LA; Allen, AM; Sigmund, CD

  • Activation of NADPH oxidase during progression of cardiac hypertrophy to failure

    Li, JM; Gall, NP; Grieve, DJ; Chen, M; Shah, AM

  • Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts

    Li, L; Fan, D; Wang, C; Wang, JY; Cui, XB; Wu, D; Zhou, Y; Wu, LL

  • Remodeling of Afferent Arterioles From Mice With Oxidative Stress Does Not Account for Increased Contractility but Does Limit Excessive Wall Stress

    Li, L; Feng, D; Luo, Z; Welch, WJ; Wilcox, CS; Lai, EY

  • Losartan Inhibits Vascular Calcification by Suppressing the BMP2 and Runx2 Expression in Rats In Vivo

    Li, M; Wu, P; Shao, J; Ke, Z; Li, D; Wu, J

  • Activation of the cardiac proteasome promotes angiotension II-induced hypertrophy by down-regulation of ATRAP

    Li, N; Wang, HX; Han, QY; Li, WJ; Zhang, YL; Du, J; Xia, YL; Li, HH

  • NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression

    Li, Q; Lin, X; Yang, X; Chang, J

  • TIEG1 Inhibits Angiotensin II-induced Cardiomyocyte Hypertrophy by Inhibiting Transcription Factor GATA4

    Li, Q; Shen, P; Zeng, S; Liu, P

  • Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy

    Li, Q; Xie, J; Wang, B; Li, R; Bai, J; Ding, L; Gu, R; Wang, L; Xu, B

  • Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis

    Li, W; Li, Q; Jiao, Y; Qin, L; Ali, R; Zhou, J; Ferruzzi, J; Kim, RW; Geirsson, A; Dietz, HC; Offermanns, S; Humphrey, JD; Tellides, G

  • Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein

    Li, W; Liu, J; Hammond, SL; Tjalkens, RB; Saifudeen, Z; Feng, Y

  • Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney

    Li, XC; Gu, V; Miguel-Qin, E; Zhuo, JL

  • AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla

    Li, XC; Shao, Y; Zhuo, JL

  • Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension in NHE3-deficient mice with transgenic rescue of NHE3 in small intestines

    Li, XC; Shull, GE; Miguel-Qin, E; Chen, F; Zhuo, JL

  • Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension

    Li, XC; Shull, GE; Miguel-Qin, E; Zhuo, JL

  • Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats

    Li, XC; Zhuo, JL

  • Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation

    Li, Y; Cai, X; Guan, Y; Wang, L; Wang, S; Li, Y; Fu, Y; Gao, X; Su, G

  • Cellular Repressor of E1A-Stimulated Genes Is a Critical Determinant of Vascular Remodeling in Response to Angiotensin II

    Li, Y; Liu, Y; Tian, X; Zhang, Y; Song, H; Liu, M; Zhang, X; Liu, H; Zhang, J; Zhang, Q; Liu, D; Peng, C; Yan, C; Han, Y

  • γδT Cell-derived interleukin-17A via an interleukin-1β-dependent mechanism mediates cardiac injury and fibrosis in hypertension

    Li, Y; Wu, Y; Zhang, C; Li, P; Cui, W; Hao, J; Ma, X; Yin, Z; Du, J

  • Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis

    Li, Y; Zhang, C; Wu, Y; Han, Y; Cui, W; Jia, L; Cai, L; Cheng, J; Li, H; Du, J

  • Surgery-Induced Hippocampal Angiotensin II Elevation Causes Blood-Brain Barrier Disruption via MMP/TIMP in Aged Rats

    Li, Z; Mo, N; Li, L; Cao, Y; Wang, W; Liang, Y; Deng, H; Xing, R; Yang, L; Ni, C; Chui, D; Guo, X

  • Aberrant endoplasmic reticulum stress in vascular smooth muscle increases vascular contractility and blood pressure in mice deficient of AMP-activated protein kinase-α2 in vivo

    Liang, B; Wang, S; Wang, Q; Zhang, W; Viollet, B; Zhu, Y; Zou, MH

  • Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors

    Liao, S; Miralles, M; Kelley, BJ; Curci, JA; Borhani, M; Thompson, RW

  • Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension

    Liao, TD; Yang, XP; Liu, YH; Shesely, EG; Cavasin, MA; Kuziel, WA; Pagano, PJ; Carretero, OA

  • Regulation of mitochondrial morphology by positive feedback interaction between PKCδ and Drp1 in vascular smooth muscle cell

    Lim, S; Lee, SY; Seo, HH; Ham, O; Lee, C; Park, JH; Lee, J; Seung, M; Yun, I; Han, SM; Lee, S; Choi, E; Hwang, KC

  • Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension

    Lin, CX; Rhaleb, NE; Yang, XP; Liao, TD; D’Ambrosio, MA; Carretero, OA

  • Mas receptor mediates cardioprotection of angiotensin-(1-7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress

    Lin, L; Liu, X; Xu, J; Weng, L; Ren, J; Ge, J; Zou, Y

  • IP3 receptors regulate vascular smooth muscle contractility and hypertension

    Lin, Q; Zhao, G; Fang, X; Peng, X; Tang, H; Wang, H; Jing, R; Liu, J; Lederer, WJ; Chen, J; Ouyang, K

  • Methyl-beta-cyclodextrin prevents angiotensin II-induced tachyphylactic contractile responses in rat aorta

    Linder, AE; Thakali, KM; Thompson, JM; Watts, SW; Webb, RC; Leite, R

  • Suppression of Resting Metabolism by the Angiotensin AT2 Receptor

    Littlejohn, NK; Keen, HL; Weidemann, BJ; Claflin, KE; Tobin, KV; Markan, KR; Park, S; Naber, MC; Gourronc, FA; Pearson, NA; Liu, X; Morgan, DA; Klingelhutz, AJ; Potthoff, MJ; Rahmouni, K; Sigmund, CD; Grobe, JL

  • Elevated Transglutaminase Activity Triggers Angiotensin Receptor Activating Autoantibody Production and Pathophysiology of Preeclampsia

    Liu, C; Luo, R; Elliott, SE; Wang, W; Parchim, NF; Iriyama, T; Daugherty, PS; Blackwell, SC; Sibai, BM; Kellems, RE; Xia, Y

  • Tissue transglutaminase contributes to the pathogenesis of preeclampsia and stabilizes placental angiotensin receptor type 1 by ubiquitination-preventing isopeptide modification

    Liu, C; Wang, W; Parchim, N; Irani, RA; Blackwell, SC; Sibai, B; Jin, J; Kellems, RE; Xia, Y

  • Angiotensin II and Abdominal Aortic Aneurysms: An Update

    Liu, J; Daugherty, A; Lu, H

  • Angiotensin type 1a receptor deficiency decreases amyloid β-protein generation and ameliorates brain amyloid pathology

    Liu, J; Liu, S; Matsumoto, Y; Murakami, S; Sugakawa, Y; Kami, A; Tanabe, C; Maeda, T; Michikawa, M; Komano, H; Zou, K

  • Adrenomedullin inhibits angiotensin II-induced oxidative stress via Csk-mediated inhibition of Src activity

    Liu, J; Shimosawa, T; Matsui, H; Meng, F; Supowit, SC; DiPette, DJ; Ando, K; Fujita, T

  • ARHGAP18 Protects Against Thoracic Aortic Aneurysm Formation by Mitigating the Synthetic and Proinflammatory Smooth Muscle Cell Phenotype

    Liu, R; Lo, L; Lay, AJ; Zhao, Y; Ting, KK; Robertson, EN; Sherrah, AG; Jarrah, S; Li, H; Zhou, Z; Hambly, BD; Richmond, DR; Jeremy, RW; Bannon, PG; Vadas, MA; Gamble, JR

  • Pak1 as a novel therapeutic target for antihypertrophic treatment in the heart

    Liu, W; Zi, M; Naumann, R; Ulm, S; Jin, J; Taglieri, DM; Prehar, S; Gui, J; Tsui, H; Xiao, R-P; Neyses, L; Solaro, RJ; Ke, Y; Cartwright, EJ; Lei, M; Wang, X

  • Regulator of G protein signaling 3 protects against cardiac hypertrophy in mice

    Liu, Y; Huang, H; Zhang, Y; Zhu, XY; Zhang, R; Guan, LH; Tang, Q; Jiang, H; Huang, C

  • Calorie restriction protects against experimental abdominal aortic aneurysms in mice

    Liu, Y; Wang, TT; Zhang, R; Fu, WY; Wang, X; Wang, F; Gao, P; Ding, YN; Xie, Y; Hao, DL; Chen, HZ; Liu, DP

  • MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes

    Liu, Y; Wang, Z; Xiao, W

  • Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension

    Lob, HE; Schultz, D; Marvar, PJ; Davisson, RL; Harrison, DG

  • Role of vascular extracellular superoxide dismutase in hypertension

    Lob, HE; Vinh, A; Li, L; Blinder, Y; Offermanns, S; Harrison, DG

  • Moderate caveolin-1 downregulation prevents NADPH oxidase-dependent endothelial nitric oxide synthase uncoupling by angiotensin II in endothelial cells

    Lobysheva, I; Rath, G; Sekkali, B; Bouzin, C; Feron, O; Gallez, B; Dessy, C; Balligand, JL

  • Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase

    Loot, AE; Schreiber, JG; Fisslthaler, B; Fleming, I

  • The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling

    Lopez-Ilasaca, M; Liu, X; Tamura, K; Dzau, VJ

  • Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis

    Lorenzen, JM; Schauerte, C; Hübner, A; Kölling, M; Martino, F; Scherf, K; Batkai, S; Zimmer, K; Foinquinos, A; Kaucsar, T; Fiedler, J; Kumarswamy, R; Bang, C; Hartmann, D; Gupta, SK; Kielstein, J; Jungmann, A; Katus, HA; Weidemann, F; Müller, OJ; Haller, H; Thum, T

  • Atherosclerosis

    Lu, H; Daugherty, A

  • Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms

    Lu, H; Rateri, DL; Bruemmer, D; Cassis, LA; Daugherty, A

  • Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus

    Lu, T; Zhang, DM; Wang, XL; He, T; Wang, RX; Chai, Q; Katusic, ZS; Lee, HC

  • Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease

    Luo, R; Zhang, W; Zhao, C; Zhang, Y; Wu, H; Jin, J; Zhang, W; Grenz, A; Eltzschig, HK; Tao, L; Kellems, RE; Xia, Y

  • SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity

    Luo, YX; Tang, X; An, XZ; Xie, XM; Chen, XF; Zhao, X; Hao, DL; Chen, HZ; Liu, DP

  • The renin-angiotensin-aldosterone system and glucose homeostasis

    Luther, JM; Brown, NJ

  • Phosphorylation of smooth muscle 22α facilitates angiotensin II-induced ROS production via activation of the PKCδ-P47phox axis through release of PKCδ and actin dynamics and is associated with hypertrophy and hyperplasia of vascular smooth muscle cells in vitro and in vivo

    Lv, P; Miao, SB; Shu, YN; Dong, LH; Liu, G; Xie, XL; Gao, M; Wang, YC; Yin, YJ; Wang, XJ; Han, M

  • Arrestins in the cardiovascular system

    Lymperopoulos, A; Bathgate, A

  • Different potencies of angiotensin receptor blockers at suppressing adrenal β-Arrestin1-dependent post-myocardial infarction hyperaldosteronism

    Lymperopoulos, A; Sturchler, E; Bathgate-Siryk, A; Dabul, S; Garcia, D; Walklett, K; Rengo, G; McDonald, P; Koch, WJ

  • A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes

    Lyu, L; Wang, H; Li, B; Qin, Q; Qi, L; Nagarkatti, M; Nagarkatti, P; Janicki, JS; Wang, XL; Cui, T

  • Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    Ma, CY; Yin, L

  • Inhibition of KLF5-Myo9b-RhoA Pathway-Mediated Podosome Formation in Macrophages Ameliorates Abdominal Aortic Aneurysm

    Ma, D; Zheng, B; Suzuki, T; Zhang, R; Jiang, C; Bai, D; Yin, W; Yang, Z; Zhang, X; Hou, L; Zhan, H; Wen, JK

  • The requirement of CD8+ T cells to initiate and augment acute cardiac inflammatory response to high blood pressure

    Ma, F; Feng, J; Zhang, C; Li, Y; Qi, G; Li, H; Wu, Y; Fu, Y; Zhao, Y; Chen, H; Du, J; Tang, H

  • Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II

    Ma, F; Li, Y; Jia, L; Han, Y; Cheng, J; Li, H; Qi, Y; Du, J

  • Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II

    Macconi, D; Perico, L; Longaretti, L; Morigi, M; Cassis, P; Buelli, S; Perico, N; Remuzzi, G; Benigni, A

  • Wnt/beta-catenin signaling: components, mechanisms, and diseases

    MacDonald, BT; Tamai, K; He, X

  • Redox signaling in cardiovascular health and disease

    Madamanchi, NR; Runge, MS

  • Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice

    Madhur, MS; Funt, SA; Li, L; Vinh, A; Chen, W; Lob, HE; Iwakura, Y; Blinder, Y; Rahman, A; Quyyumi, AA; Harrison, DG

  • Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction

    Madhur, MS; Lob, HE; McCann, LA; Iwakura, Y; Blinder, Y; Guzik, TJ; Harrison, DG

  • MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion

    Maegdefessel, L; Azuma, J; Toh, R; Deng, A; Merk, DR; Raiesdana, A; Leeper, NJ; Raaz, U; Schoelmerich, AM; McConnell, MV; Dalman, RL; Spin, JM; Tsao, PS

  • Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development

    Maegdefessel, L; Azuma, J; Toh, R; Merk, DR; Deng, A; Chin, JT; Raaz, U; Schoelmerich, AM; Raiesdana, A; Leeper, NJ; McConnell, MV; Dalman, RL; Spin, JM; Tsao, PS

  • Arterial stiffness and the renin-angiotensin-aldosterone system

    Mahmud, A; Feely, J

  • The role of the adventitia in vascular inflammation

    Maiellaro, K; Taylor, WR

  • Catalase overexpression in aortic smooth muscle prevents pathological mechanical changes underlying abdominal aortic aneurysm formation

    Maiellaro-Rafferty, K; Weiss, D; Joseph, G; Wan, W; Gleason, RL; Taylor, WR

  • Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening

    Majeed, B; Tawinwung, S; Eberson, LS; Secomb, TW; Larmonier, N; Larson, DF

  • Gene expression profiles linked to AT1 angiotensin receptors in the kidney

    Makhanova, NA; Crowley, SD; Griffiths, RC; Coffman, TM

  • Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study

    Makino, H; Tada, Y; Wada, K; Liang, EI; Chang, M; Mobashery, S; Kanematsu, Y; Kurihara, C; Palova, E; Kanematsu, M; Kitazato, K; Hashimoto, T

  • Role of the renin-angiotensin system on abdominal aortic aneurysms

    Malekzadeh, S; Fraga-Silva, RA; Trachet, B; Montecucco, F; Mach, F; Stergiopulos, N

  • AT1 receptor antagonism to reduce aortic expansion in Marfan syndrome: lost in translation or in need of different interpretation?

    Mallat, Z; Daugherty, A

  • The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells

    Maltese, G; Psefteli, PM; Rizzo, B; Srivastava, S; Gnudi, L; Mann, GE; Siow, RC

  • Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone

    Mamenko, M; Zaika, O; Ilatovskaya, DV; Staruschenko, A; Pochynyuk, O

  • Chronic angiotensin II infusion drives extensive aldosterone-independent epithelial Na+ channel activation

    Mamenko, M; Zaika, O; Prieto, MC; Jensen, VB; Doris, PA; Navar, LG; Pochynyuk, O

  • AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit

    Manea, A; Manea, SA; Gafencu, AV; Raicu, M; Simionescu, M

  • The role of IL-6 in the physiologic versus hypertensive blood pressure actions of angiotensin II

    Manhiani, MM; Seth, DM; Banes-Berceli, AK; Satou, R; Navar, LG; Brands, MW

  • Hypertension and atrial fibrillation: diagnostic approach, prevention and treatment. Position paper of the Working Group ‘Hypertension Arrhythmias and Thrombosis’ of the European Society of Hypertension

    Manolis, AJ; Rosei, EA; Coca, A; Cifkova, R; Erdine, SE; Kjeldsen, S; Lip, GY; Narkiewicz, K; Parati, G; Redon, J; Schmieder, R; Tsioufis, C; Mancia, G

  • New insights into insulin action and resistance in the vasculature

    Manrique, C; Lastra, G; Sowers, JR

  • Role of the renin-angiotensin system in vascular inflammation

    Marchesi, C; Paradis, P; Schiffrin, EL

  • Protective role of vascular smooth muscle cell PPARγ in angiotensin II-induced vascular disease

    Marchesi, C; Rehman, A; Rautureau, Y; Kasal, DA; Briet, M; Leibowitz, A; Simeone, SM; Ebrahimian, T; Neves, MF; Offermanns, S; Gonzalez, FJ; Paradis, P; Schiffrin, EL

  • Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance

    Marcus, Y; Shefer, G; Stern, N

  • Bcl10 mediates angiotensin II-induced cardiac damage and electrical remodeling

    Markó, L; Henke, N; Park, JK; Spallek, B; Qadri, F; Balogh, A; Apel, IJ; Oravecz-Wilson, KI; Choi, M; Przybyl, L; Binger, KJ; Haase, N; Wilck, N; Heuser, A; Fokuhl, V; Ruland, J; Lucas, PC; McAllister-Lucas, LM; Luft, FC; Dechend, R; Müller, DN

  • Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage

    Markó, L; Kvakan, H; Park, JK; Qadri, F; Spallek, B; Binger, KJ; Bowman, EP; Kleinewietfeld, M; Fokuhl, V; Dechend, R; Müller, DN

  • Sonic hedgehog carried by microparticles corrects angiotensin II-induced hypertension and endothelial dysfunction in mice

    Marrachelli, VG; Mastronardi, ML; Sarr, M; Soleti, R; Leonetti, D; Martínez, MC; Andriantsitohaina, R

  • Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice

    Marsh, SA; Dell’Italia, LJ; Chatham, JC

  • Deficiency of MMP17/MT4-MMP proteolytic activity predisposes to aortic aneurysm in mice

    Martín-Alonso, M; García-Redondo, AB; Guo, D; Camafeita, E; Martínez, F; Alfranca, A; Méndez-Barbero, N; Pollán, Á; Sánchez-Camacho, C; Denhardt, DT; Seiki, M; Vázquez, J; Salaices, M; Redondo, JM; Milewicz, D; Arroyo, AG

  • Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK

    Martínez-Revelles, S; García-Redondo, AB; Avendaño, MS; Varona, S; Palao, T; Orriols, M; Roque, FR; Fortuño, A; Touyz, RM; Martínez-González, J; Salaices, M; Rodríguez, C; Briones, AM

  • Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle

    Marzetti, E; Calvani, R; DuPree, J; Lees, HA; Giovannini, S; Seo, DO; Buford, TW; Sweet, K; Morgan, D; Strehler, KYE; Diz, D; Borst, SE; Moningka, N; Krotova, K; Carter, CS

  • Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation

    Massiéra, F; Bloch-Faure, M; Ceiler, D; Murakami, K; f*ckamizu, A; Gasc, JM; Quignard-Boulange, A; Negrel, R; Ailhaud, G; Seydoux, J; Meneton, P; Teboul, M

  • Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity

    Massiera, F; Seydoux, J; Geloen, A; Quignard-Boulange, A; Turban, S; Saint-Marc, P; f*ckamizu, A; Negrel, R; Ailhaud, G; Teboul, M

  • AT2 receptor activities and pathophysiological implications

    Matavelli, LC; Siragy, HM

  • Angiotensin II type-2 receptor stimulation induces neuronal VEGF synthesis after cerebral ischemia

    Mateos, L; Perez-Alvarez, MJ; Wandosell, F

  • Angiotensin II Activates MCP-1 and Induces Cardiac Hypertrophy and Dysfunction via Toll-like Receptor 4

    Matsuda, S; Umemoto, S; Yoshimura, K; Itoh, S; Murata, T; f*ckai, T; Matsuzaki, M

  • Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ

    Matsuda, T; Hiyama, TY; Niimura, F; Matsusaka, T; f*ckamizu, A; Kobayashi, K; Kobayashi, K; Noda, M

  • Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice

    Matsumura, S; Iwanaga, S; Mochizuki, S; Okamoto, H; Ogawa, S; Okada, Y

  • Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice

    Matsuno, K; Yamada, H; Iwata, K; Jin, D; Katsuyama, M; Matsuki, M; Takai, S; Yamanishi, K; Miyazaki, M; Matsubara, H; Yabe-Nishimura, C

  • Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload

    Matsusaka, H; Ide, T; Matsushima, S; Ikeuchi, M; Kubota, T; Sunagawa, K; Kinugawa, S; Tsutsui, H

  • Podocyte injury enhances filtration of liver-derived angiotensinogen and renal angiotensin II generation

    Matsusaka, T; Niimura, F; Pastan, I; Shintani, A; Nishiyama, A; Ichikawa, I

  • Liver angiotensinogen is the primary source of renal angiotensin II

    Matsusaka, T; Niimura, F; Shimizu, A; Pastan, I; Saito, A; Kobori, H; Nishiyama, A; Ichikawa, I

  • Deletion of angiotensin II type 2 receptor accelerates adipogenesis in murine mesenchymal stem cells via Wnt10b/beta-catenin signaling

    Matsush*ta, K; Wu, Y; Pratt, RE; Dzau, VJ

  • Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor

    Matsuura, H; Ichiki, T; Ikeda, J; Takeda, K; Miyazaki, R; Hashimoto, T; Narabayashi, E; Kitamoto, S; Tokunou, T; Sunagawa, K

  • TNF/Ang-II synergy is obligate for fibroinflammatory pathology, but not for changes in cardiorenal function

    Mayr, M; Duerrschmid, C; Medrano, G; Taffet, GE; Wang, Y; Entman, ML; Haudek, SB

  • The CARMA3-Bcl10-MALT1 signalosome promotes angiotensin II-dependent vascular inflammation and atherogenesis

    McAllister-Lucas, LM; Jin, X; Gu, S; Siu, K; McDonnell, S; Ruland, J; Delekta, PC; Van Beek, M; Lucas, PC

  • CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells

    McAllister-Lucas, LM; Ruland, J; Siu, K; Jin, X; Gu, S; Kim, DS; Kuffa, P; Kohrt, D; Mak, TW; Nuñez, G; Lucas, PC

  • Update on the angiotensin AT(2) receptor

    McCarthy, CA; Widdop, RE; Denton, KM; Jones, ES

  • Angiotensin-(1-7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1

    McCollum, LT; Gallagher, PE; Tallant, EA

  • Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease

    McCurley, A; McGraw, A; Pruthi, D; Jaffe, IZ

  • Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors

    McCurley, A; Pires, PW; Bender, SB; Aronovitz, M; Zhao, MJ; Metzger, D; Chambon, P; Hill, MA; Dorrance, AM; Mendelsohn, ME; Jaffe, IZ

  • Inflammation, immunity, and hypertensive end-organ damage

    McMaster, WG; Kirabo, A; Madhur, MS; Harrison, DG

  • The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a

    Mederle, K; Gess, B; Pluteanu, F; Plackic, J; Tiefenbach, KJ; Grill, A; Kockskämper, J; Castrop, H

  • Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction

    Mederos y Schnitzler, M; Storch, U; Meibers, S; Nurwakagari, P; Breit, A; Essin, K; Gollasch, M; Gudermann, T

  • Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system

    Mehta, PK; Griendling, KK

  • Nox and Inflammation in the Vascular Adventitia

    Meijles, DN; Pagano, PJ

  • Sphingosine-1-phosphate signalling-a key player in the pathogenesis of Angiotensin II-induced hypertension

    Meissner, A; Miro, F; Jiménez-Altayó, F; Jurado, A; Vila, E; Planas, AM

  • Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe-/- mice

    Mellak, S; Ait-Oufella, H; Esposito, B; Loyer, X; Poirier, M; Tedder, TF; Tedgui, A; Mallat, Z; Potteaux, S

  • How Does Angiotensin Activate Hypothalamic Neurons Essential for Controlling Sympathetic Activity and Blood Pressure?

    Mendelowitz, D

  • Effect of caveolin-1 scaffolding peptide and 17beta-estradiol on intracellular Ca2+ kinetics evoked by angiotensin II in human vascular smooth muscle cells

    Méndez-Bolaina, E; Sánchez-González, J; Ramírez-Sánchez, I; Ocharán-Hernández, E; Núñez-Sánchez, M; Meaney-Mendiolea, E; Meaney, A; Asbun-Bojalil, J; Miliar-García, A; Olivares-Corichi, I; Ceballos-Reyes, G

  • Regulatory T cells prevent angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E knockout mice

    Meng, X; Yang, J; Zhang, K; An, G; Kong, J; Jiang, F; Zhang, Y; Zhang, C

  • Mechanisms of Hippo pathway regulation

    Meng, Z; Moroishi, T; Guan, KL

  • Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage

    Mennuni, S; Rubattu, S; Pierelli, G; Tocci, G; Fofi, C; Volpe, M

  • Predisposition to atherosclerosis and aortic aneurysms in mice deficient in kinin B1 receptor and apolipoprotein E

    Merino, VF; Todiras, M; Mori, MA; Sales, VM; Fonseca, RG; Saul, V; Tenner, K; Bader, M; Pesquero, JB

  • Metabolomics in angiotensin II-induced cardiac hypertrophy

    Mervaala, E; Biala, A; Merasto, S; Lempiäinen, J; Mattila, I; Martonen, E; Eriksson, O; Louhelainen, M; Finckenberg, P; Kaheinen, P; Muller, DN; Luft, FC; Lapatto, R; Oresic, M

  • Obligatory role for GPER in cardiovascular aging and disease

    Meyer, MR; Fredette, NC; Daniel, C; Sharma, G; Amann, K; Arterburn, JB; Barton, M; Prossnitz, ER

  • Accumulation of Smooth Muscle 22α Protein Accelerates Senescence of Vascular Smooth Muscle Cells via Stabilization of p53 In Vitro and In Vivo

    Miao, SB; Xie, XL; Yin, YJ; Zhao, LL; Zhang, F; Shu, YN; Chen, R; Chen, P; Dong, LH; Lin, YL; Lv, P; Zhang, DD; Nie, X; Xue, ZY; Han, M

  • Nifedipine attenuation of abdominal aortic aneurysm in hypertensive and non-hypertensive mice: mechanisms and implications

    Miao, XN; Siu, KL; Cai, H

  • L-type calcium channel inhibitor diltiazem prevents aneurysm formation by blood pressure-independent anti-inflammatory effects

    Mieth, A; Revermann, M; Babelova, A; Weigert, A; Schermuly, RT; Brandes, RP

  • G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor

    Mifune, M; Ohtsu, H; Suzuki, H; Nakashima, H; Brailoiu, E; Dun, NJ; Frank, GD; Inagami, T; Higashiyama, S; Thomas, WG; Eckhart, AD; Dempsey, PJ; Eguchi, S

  • Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension

    Mikolajczyk, TP; Nosalski, R; Szczepaniak, P; Budzyn, K; Osmenda, G; Skiba, D; Sagan, A; Wu, J; Vinh, A; Marvar, PJ; Guzik, B; Podolec, J; Drummond, G; Lob, HE; Harrison, DG; Guzik, TJ

  • Angiotensin II type 2 receptor-interacting protein prevents vascular senescence

    Min, L-J; Mogi, M; Iwanami, J; Jing, F; Tsukuda, K; Ohshima, K; Horiuchi, M

  • Angiotensin II type 1 receptor-associated protein prevents vascular smooth muscle cell senescence via inactivation of calcineurin/nuclear factor of activated T cells pathway

    Min, L-J; Mogi, M; Tamura, K; Iwanami, J; Sakata, A; Fujita, T; Tsukuda, K; Jing, F; Iwai, M; Horiuchi, M

  • Angiotensin II type 2 receptor deletion enhances vascular senescence by methyl methanesulfonate sensitive 2 inhibition

    Min, LJ; Mogi, M; Iwanami, J; Li, JM; Sakata, A; Fujita, T; Tsukuda, K; Iwai, M; Horiuchi, M

  • Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease

    Minamino, T; Komuro, I; Kitakaze, M

  • TM2-TM7 interaction in coupling movement of transmembrane helices to activation of the angiotensin II type-1 receptor

    Miura, S; Zhang, J; Boros, J; Karnik, SS

  • Activation of extracellular signal-activated kinase by angiotensin II-induced Gq-independent epidermal growth factor receptor transactivation

    Miura, S; Zhang, J; Matsuo, Y; Saku, K; Karnik, SS

  • Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases

    Mogi, M; Horiuchi, M

  • Emerging concepts of regulation of angiotensin II receptors: new players and targets for traditional receptors

    Mogi, M; Iwai, M; Horiuchi, M

  • The β-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium

    Monasky, MM; Taglieri, DM; Henze, M; Warren, CM; Utter, MS; Soergel, DG; Violin, JD; Solaro, RJ

  • Involvement of the platelet-derived growth factor receptor in angiotensin II-induced activation of extracellular regulated kinases 1 and 2 in human mesangial cells

    Mondorf, UF; Geiger, H; Herrero, M; Zeuzem, S; Piiper, A

  • The renin-angiotensin system modulates inflammatory processes in atherosclerosis: evidence from basic research and clinical studies

    Montecucco, F; Pende, A; Mach, F

  • Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells

    Montezano, AC; Burger, D; Paravicini, TM; Chignalia, AZ; Yusuf, H; Almasri, M; He, Y; Callera, GE; He, G; Krause, KH; Lambeth, D; Quinn, MT; Touyz, RM

  • Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research

    Montezano, AC; Touyz, RM

  • Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis

    Moore-Morris, T; Guimarães-Camboa, N; Banerjee, I; Zambon, AC; Kisseleva, T; Velayoudon, A; Stallcup, WB; Gu, Y; Dalton, ND; Cedenilla, M; Gomez-Amaro, R; Zhou, B; Brenner, DA; Peterson, KL; Chen, J; Evans, SM

  • Cardiac fibroblasts: from development to heart failure

    Moore-Morris, T; Guimarães-Camboa, N; Yutzey, KE; Pucéat, M; Evans, SM

  • Alpha1beta1 and integrin-linked kinase interact and modulate angiotensin II effects in vascular smooth muscle cells

    Moraes, JA; Frony, AC; Dias, AM; Renovato-Martins, M; Rodrigues, G; Marcinkiewicz, C; Assreuy, J; Barja-Fidalgo, C

  • Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis

    Moran, CS; Seto, SW; Krishna, SM; Sharma, S; Jose, RJ; Biros, E; Wang, Y; Morton, SK; Golledge, J

  • Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction

    Mori, J; Basu, R; McLean, BA; Das, SK; Zhang, L; Patel, VB; Wagg, CS; Kassiri, Z; Lopaschuk, GD; Oudit, GY

  • New insights into sodium transport regulation in the distal nephron: role of G-protein coupled receptors

    Morla, L; Edwards, A; Crambert, G

  • The role of angiotensin II in nonalcoholic steatohepatitis

    Morris, EM; Fletcher, JA; Thyfault, JP; Rector, RS

  • Thick ascending limb of the loop of Henle

    Mount, DB

  • Hypertension-Causing Mutation in Peroxisome Proliferator-Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle

    Mukohda, M; Lu, KT; Guo, DF; Wu, J; Keen, HL; Liu, X; Ketsawatsomkron, P; Stump, M; Rahmouni, K; Quelle, FW; Sigmund, CD

  • Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors

    Mukoyama, M; Nakajima, M; Horiuchi, M; Sasamura, H; Pratt, RE; Dzau, VJ

  • Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act

    Muniyappa, R; Yavuz, S

  • Long-term treatment with an angiotensin II receptor blocker decreases adipocyte size and improves insulin signaling in obese Zucker rats

    Muñoz, MC; Giani, JF; Dominici, FP; Turyn, D; Toblli, JE

  • Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension

    Muñoz-Durango, N; Fuentes, CA; Castillo, AE; González-Gómez, LM; Vecchiola, A; Fardella, CE; Kalergis, AM

  • Potential U.S. Population Impact of the 2017 American College of Cardiology/American Heart Association High Blood Pressure Guideline

    Muntner, P; Carey, RM; Gidding, S; Jones, DW; Taler, SJ; Wright, JT; Whelton, PK

  • Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction

    Murdoch, CE; Alom-Ruiz, SP; Wang, M; Zhang, M; Walker, S; Yu, B; Brewer, A; Shah, AM

  • Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition

    Murdoch, CE; Chaubey, S; Zeng, L; Yu, B; Ivetic, A; Walker, SJ; Vanhoutte, D; Heymans, S; Grieve, DJ; Cave, AC; Brewer, AC; Zhang, M; Shah, AM

  • Disruption of muscle renin-angiotensin system in AT1a-/- mice enhances muscle function despite reducing muscle mass but compromises repair after injury

    Murphy, KT; Allen, AM; Chee, A; Naim, T; Lynch, GS

  • Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor

    Murphy, TJ; Alexander, RW; Griendling, KK; Runge, MS; Bernstein, KE

  • The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention

    Muscogiuri, G; Chavez, AO; Gastaldelli, A; Perego, L; Tripathy, D; Saad, MJ; Velloso, L; Folli, F

  • mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II

    Muta, K; Morgan, DA; Grobe, JL; Sigmund, CD; Rahmouni, K

  • Angiotensin II induces neutrophil accumulation in vivo through generation and release of CXC chemokines

    Nabah, YN; Mateo, T; Estellés, R; Mata, M; Zagorski, J; Sarau, H; Cortijo, J; Morcillo, EJ; Jose, PJ; Sanz, MJ

  • NADPH oxidases and cardiac remodelling

    Nabeebaccus, A; Zhang, M; Shah, AM

  • Role of blood cell-associated angiotensin II type 1 receptors in the cerebral microvascular response to ischemic stroke during angiotensin-induced hypertension

    Nagai, M; Terao, S; Vital, SA; Rodrigues, SF; Yilmaz, G; Granger, DN

  • Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system

    Nagata, S; Kato, J; Sasaki, K; Minamino, N; Eto, T; Kitamura, K

  • MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis

    Nagpal, V; Rai, R; Place, AT; Murphy, SB; Verma, SK; Ghosh, AK; Vaughan, DE

  • Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine

    Nagy, T; Champattanachai, V; Marchase, RB; Chatham, JC

  • How Is the Brain Renin-Angiotensin System Regulated?

    Nakagawa, P; Sigmund, CD

  • Transient Mild Cerebral Ischemia Significantly Deteriorated Cognitive Impairment in a Mouse Model of Alzheimer’s Disease via Angiotensin AT1 Receptor

    Nakagawa, T; Hasegawa, Y; Uekawa, K; Senju, S; Nakagata, N; Matsui, K; Kim-Mitsuyama, S

  • Critical role of apoptosis signal-regulating kinase 1 in aldosterone/salt-induced cardiac inflammation and fibrosis

    Nakamura, T; Kataoka, K; f*ckuda, M; Nako, H; Tokutomi, Y; Dong, YF; Ichijo, H; Ogawa, H; Kim-Mitsuyama, S

  • Novel role of protein kinase C-delta Tyr 311 phosphorylation in vascular smooth muscle cell hypertrophy by angiotensin II

    Nakashima, H; Frank, GD; Shirai, H; Hinoki, A; Higuchi, S; Ohtsu, H; Eguchi, K; Sanjay, A; Reyland, ME; Dempsey, PJ; Inagami, T; Eguchi, S

  • Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation

    Nakashima, H; Kumagai, K; Urata, H; Gondo, N; Ideishi, M; Arakawa, K

  • The IP3 receptor regulates cardiac hypertrophy in response to select stimuli

    Nakayama, H; Bodi, I; Maillet, M; DeSantiago, J; Domeier, TL; Mikoshiba, K; Lorenz, JN; Blatter, LA; Bers, DM; Molkentin, JD

  • Imidapril, an angiotensin-converting enzyme inhibitor, improves insulin sensitivity by enhancing signal transduction via insulin receptor substrate proteins and improving vascular resistance in the Zucker fatty rat

    Nawano, M; Anai, M; Funaki, M; Kobayashi, H; Kanda, A; f*ckushima, Y; Inukai, K; Ogihara, T; Sakoda, H; Onishi, Y; Kikuchi, M; Yazaki, Y; Oka, Y; Asano, T

  • Transcriptomic Analysis Reveals Novel Transcription Factors Associated With Renin-Angiotensin-Aldosterone System in Human Atheroma

    Nehme, A; Cerutti, C; Zibara, K

  • Coming of age: molecular drivers of aging and therapeutic opportunities

    Newgard, CB; Sharpless, NE

  • Angiotensin II, NADPH oxidase, and redox signaling in the vasculature

    Nguyen Dinh Cat, A; Montezano, AC; Burger, D; Touyz, RM

  • Cell signaling of angiotensin II on vascular tone: novel mechanisms

    Nguyen Dinh Cat, A; Touyz, RM

  • Renin, (pro)renin and receptor: an update

    Nguyen, G

  • Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron

    Nguyen, MTX; Han, J; Ralph, DL; Veiras, LC; McDonough, AA

  • Ets-1 is a critical transcriptional regulator of reactive oxygen species and p47(phox) gene expression in response to angiotensin II

    Ni, W; Zhan, Y; He, H; Maynard, E; Balschi, JA; Oettgen, P

  • Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-kappaB

    Nishida, M; Ogushi, M; Suda, R; Toyotaka, M; Saiki, S; Kitajima, N; Nakaya, M; Kim, KM; Ide, T; Sato, Y; Inoue, K; Kurose, H

  • Purinergic P2Y6 receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II-induced hypertension

    Nishimura, A; Sunggip, C; Tozaki-Saitoh, H; Shimauchi, T; Numaga-Tomita, T; Hirano, K; Ide, T; Boeynaems, JM; Kurose, H; Tsuda, M; Robaye, B; Inoue, K; Nishida, M

  • Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel

    Nishioka, K; Nishida, M; Ariyoshi, M; Jian, Z; Saiki, S; Hirano, M; Nakaya, M; Sato, Y; Kita, S; Iwamoto, T; Hirano, K; Inoue, R; Kurose, H

  • Protective effects of endogenous adrenomedullin on cardiac hypertrophy, fibrosis, and renal damage

    Niu, P; Shindo, T; Iwata, H; Iimuro, S; Takeda, N; Zhang, Y; Ebihara, A; Suematsu, Y; Kangawa, K; Hirata, Y; Nagai, R

  • Angiotensin II regulation of adrenocortical gene transcription

    Nogueira, EF; Bollag, WB; Rainey, WE

  • Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    Noll, C; Labbé, SM; Pinard, S; Shum, M; Bilodeau, L; Chouinard, L; Phoenix, S; Lecomte, R; Carpentier, AC; Gallo-Payet, N

  • Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus

    Nomura, S; Shouzu, A; Omoto, S; Nishikawa, M; Iwasaka, T

  • A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage

    Norlander, AE; Saleh, MA; Pandey, AK; Itani, HA; Wu, J; Xiao, L; Kang, J; Dale, BL; Goleva, SB; Laroumanie, F; Du, L; Harrison, DG; Madhur, MS

  • Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP

    Nouet, S; Amzallag, N; Li, JM; Louis, S; Seitz, I; Cui, TX; Alleaume, AM; Di Benedetto, M; Boden, C; Masson, M; Strosberg, AD; Horiuchi, M; Couraud, PO; Nahmias, C

  • Elastase-induced intracranial aneurysms in hypertensive mice

    Nuki, Y; Tsou, TL; Kurihara, C; Kanematsu, M; Kanematsu, Y; Hashimoto, T

  • Measurement of immunoreactive angiotensin-(1-7) heptapeptide in human blood

    Nussberger, J; Brunner, DB; Nyfeler, JA; Linder, L; Brunner, HR

  • The role of autophagy in vascular biology

    Nussenzweig, SC; Verma, S; Finkel, T

  • Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells

    O’Leary, R; Penrose, H; Miyata, K; Satou, R

  • MicroRNA as a novel component of the tissue renin angiotensin system

    Obama, T; Eguchi, S

  • Vascular induction of a disintegrin and metalloprotease 17 by angiotensin II through hypoxia inducible factor 1α

    Obama, T; Takayanagi, T; Kobayashi, T; Bourne, AM; Elliott, KJ; Charbonneau, M; Dubois, CM; Eguchi, S

  • Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model

    Obama, T; Tsuji, T; Kobayashi, T; f*ckuda, Y; Takayanagi, T; Taro, Y; Kawai, T; Forrester, SJ; Elliott, KJ; Choi, E; Daugherty, A; Rizzo, V; Eguchi, S

  • Recent insights and therapeutic perspectives of angiotensin-(1-9) in the cardiovascular system

    Ocaranza, MP; Michea, L; Chiong, M; Lagos, CF; Lavandero, S; Jalil, JE

  • MMP-2 mediates angiotensin II-induced hypertension under the transcriptional control of MMP-7 and TACE

    Odenbach, J; Wang, X; Cooper, S; Chow, FL; Oka, T; Lopaschuk, G; Kassiri, Z; Fernandez-Patron, C

  • Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension

    Ohsawa, M; Tamura, K; Wakui, H; Maeda, A; Dejima, T; Kanaoka, T; Azushima, K; Uneda, K; Tsurumi-Ikeya, Y; Kobayashi, R; Matsuda, M; Uchida, S; Toya, Y; Kobori, H; Nishiyama, A; Yamash*ta, A; Ishikawa, Y; Umemura, S

  • Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance

    Ohshima, K; Mogi, M; Jing, F; Iwanami, J; Tsukuda, K; Min, LJ; Higaki, J; Horiuchi, M

  • ADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II

    Ohtsu, H; Dempsey, PJ; Frank, GD; Brailoiu, E; Higuchi, S; Suzuki, H; Nakashima, H; Eguchi, K; Eguchi, S

  • Central role of Gq in the hypertrophic signal transduction of angiotensin II in vascular smooth muscle cells

    Ohtsu, H; Higuchi, S; Shirai, H; Eguchi, K; Suzuki, H; Hinoki, A; Brailoiu, E; Eckhart, AD; Frank, GD; Eguchi, S

  • Thirst driving and suppressing signals encoded by distinct neural populations in the brain

    Oka, Y; Ye, M; Zuker, CS

  • Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors

    Olivares-Reyes, JA; Shah, BH; Hernández-Aranda, J; García-Caballero, A; Farshori, MP; García-Sáinz, JA; Catt, KJ

  • Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts

    Olson, ER; Shamhart, PE; Naugle, JE; Meszaros, JG

  • Involvement of apoptosis signal-regulating kinase-1 on angiotensin II-induced monocyte chemoattractant protein-1 expression

    Omura, T; Yoshiyama, M; Kim, S; Matsumoto, R; Nakamura, Y; Izumi, Y; Ichijo, H; Sudo, T; Akioka, K; Iwao, H; Takeuchi, K; Yoshikawa, J

  • p63RhoGEF regulates auto- and paracrine signaling in cardiac fibroblasts

    Ongherth, A; Pasch, S; Wuertz, CM; Nowak, K; Kittana, N; Weis, CA; Jatho, A; Vettel, C; Tiburcy, M; Toischer, K; Hasenfuss, G; Zimmermann, WH; Wieland, T; Lutz, S

  • Identification of a novel cell binding site of periostin involved in tumour growth

    Orecchia, P; Conte, R; Balza, E; Castellani, P; Borsi, L; Zardi, L; Mingari, MC; Carnemolla, B

  • NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension

    Orlov, SN; Koltsova, SV; Kapilevich, LV; Gusakova, SV; Dulin, NO

  • Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin-angiotensin system in vascular calcification

    Osako, MK; Nakagami, H; Shimamura, M; Koriyama, H; Nakagami, F; Shimizu, H; Miyake, T; Yoshizumi, M; Rakugi, H; Morish*ta, R

  • Roles of the (pro)renin receptor in the kidney

    Oshima, Y; Morimoto, S; Ichihara, A

  • Attenuation of inflammatory vascular remodeling by angiotensin II type 1 receptor-associated protein

    Osh*ta, A; Iwai, M; Chen, R; Ide, A; Okumura, M; f*ckunaga, S; Yoshii, T; Mogi, M; Higaki, J; Horiuchi, M

  • MyD88 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation independent of signaling through Toll-like receptors 2 and 4

    Owens, AP; Rateri, DL; Howatt, DA; Moore, KJ; Tobias, PS; Curtiss, LK; Lu, H; Cassis, LA; Daugherty, A

  • Angiotensin II induces a region-specific hyperplasia of the ascending aorta through regulation of inhibitor of differentiation 3

    Owens, AP; Subramanian, V; Moorleghen, JJ; Guo, Z; McNamara, CA; Cassis, LA; Daugherty, A

  • Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells

    Ozasa, Y; Akazawa, H; Qin, Y; Tateno, K; Ito, K; Kudo-Sakamoto, Y; Yano, M; Yabumoto, C; Naito, AT; Oka, T; Lee, JK; Minamino, T; Nagai, T; Kobayashi, Y; Komuro, I

  • Crucial role of Rho-nuclear factor-kappaB axis in angiotensin II-induced renal injury

    Ozawa, Y; Kobori, H

  • Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions

    Ozawa, Y; Kobori, H; Suzaki, Y; Navar, LG

  • Role of endoplasmic reticulum stress in metabolic disease and other disorders

    Ozcan, L; Tabas, I

  • Role of copper transport protein antioxidant 1 in angiotensin II-induced hypertension: a key regulator of extracellular superoxide dismutase

    Ozumi, K; Sudhahar, V; Kim, HW; Chen, GF; Kohno, T; Finney, L; Vogt, S; McKinney, RD; Ushio-f*ckai, M; f*ckai, T

  • AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function

    Padia, SH; Carey, RM

  • Intrarenal angiotensin III infusion induces natriuresis and angiotensin type 2 receptor translocation in Wistar-Kyoto but not in spontaneously hypertensive rats

    Padia, SH; Kemp, BA; Howell, NL; Gildea, JJ; Keller, SR; Carey, RM

  • Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling

    Paek, J; Kalocsay, M; Staus, DP; Wingler, L; Pascolutti, R; Paulo, JA; Gygi, SP; Kruse, AC

  • Activation of the rat renin promoter by HOXD10.PBX1b.PREP1, Ets-1, and the intracellular domain of notch

    Pan, L; Glenn, ST; Jones, CA; Gross, KW

  • MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy

    Pan, W; Zhong, Y; Cheng, C; Liu, B; Wang, L; Li, A; Xiong, L; Liu, S

  • GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells

    Pang, J; Yan, C; Natarajan, K; Cavet, ME; Massett, MP; Yin, G; Berk, BC

  • Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF)

    Pang, PS; Butler, J; Collins, SP; Cotter, G; Davison, BA; Ezekowitz, JA; Filippatos, G; Levy, PD; Metra, M; Ponikowski, P; Teerlink, JR; Voors, AA; Bharucha, D; Goin, K; Soergel, DG; Felker, GM

  • MicroRNA-155 Exerts Cell-Specific Antiangiogenic but Proarteriogenic Effects During Adaptive Neovascularization

    Pankratz, F; Bemtgen, X; Zeiser, R; Leonhardt, F; Kreuzaler, S; Hilgendorf, I; Smolka, C; Helbing, T; Hoefer, I; Esser, JS; Kustermann, M; Moser, M; Bode, C; Grundmann, S

  • Cardioprotective effects of angiotensin III against ischemic injury via the AT2 receptor and KATP channels

    Park, BM; Gao, S; Cha, SA; Park, BH; Kim, SH

  • Caveolae as plasma membrane sensors, protectors and organizers

    Parton, RG; del Pozo, MA

  • Angiotensin-(1-7): beyond the cardio-renal actions

    Passos-Silva, DG; Verano-Braga, T; Santos, RA

  • RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling

    Patel, J; McNeill, E; Douglas, G; Hale, AB; de Bono, J; Lee, R; Iqbal, AJ; Regan-Komito, D; Stylianou, E; Greaves, DR; Channon, KM

  • Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis

    Patel, VB; Bodiga, S; Basu, R; Das, SK; Wang, W; Wang, Z; Lo, J; Grant, MB; Zhong, J; Kassiri, Z; Oudit, GY

  • Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS

    Patel, VB; Clarke, N; Wang, Z; Fan, D; Parajuli, N; Basu, R; Putko, B; Kassiri, Z; Turner, AJ; Oudit, GY

  • Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells

    Patrushev, N; Seidel-Rogol, B; Salazar, G

  • Regulation of AT1R expression through HuR by insulin

    Paukku, K; Backlund, M; De Boer, RA; Kalkkinen, N; Kontula, KK; Lehtonen, JY

  • Direct angiotensin II type 2 receptor stimulation in Nω-nitro-l-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling

    Paulis, L; Becker, ST; Lucht, K; Schwengel, K; Slavic, S; Kaschina, E; Thöne-Reineke, C; Dahlöf, B; Baulmann, J; Unger, T; Steckelings, UM

  • Angiotensin blockade in diabetic patients decreases insulin resistance-associated low-grade inflammation

    Pavlatou, MG; Mastorakos, G; Margeli, A; Kouskouni, E; Tentolouris, N; Katsilambros, N; Chrousos, GP; Papassotiriou, I

  • Dominant negative PPARγ promotes atherosclerosis, vascular dysfunction, and hypertension through distinct effects in endothelium and vascular muscle

    Pelham, CJ; Keen, HL; Lentz, SR; Sigmund, CD

  • Central Angiotensin-II Increases Blood Pressure and Sympathetic Outflow via Rho Kinase Activation in Conscious Rabbits

    Pellegrino, PR; Schiller, AM; Haack, KK; Zucker, IH

  • Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2

    Pellieux, C; Foletti, A; Peduto, G; Aubert, JF; Nussberger, J; Beermann, F; Brunner, HR; Pedrazzini, T

  • Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems

    Pellman, J; Zhang, J; Sheikh, F

  • Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus

    Pena, MJ; Heinzel, A; Rossing, P; Parving, HH; Dallmann, G; Rossing, K; Andersen, S; Mayer, B; Heerspink, HJ

  • Novel role for endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms

    Peña-Silva, RA; Chalouhi, N; Wegman-Points, L; Ali, M; Mitchell, I; Pierce, GL; Chu, Y; Ballas, ZK; Heistad, D; Hasan, D

  • (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells

    Peng, H; Li, W; Seth, DM; Nair, AR; Francis, J; Feng, Y

  • Profibrotic Role for Interleukin-4 in Cardiac Remodeling and Dysfunction

    Peng, H; Sarwar, Z; Yang, XP; Peterson, EL; Xu, J; Janic, B; Rhaleb, N; Carretero, OA; Rhaleb, NE

  • Angiotensin II-induced dilated cardiomyopathy in Balb/c but not C57BL/6J mice

    Peng, H; Yang, XP; Carretero, OA; Nakagawa, P; D’Ambrosio, M; Leung, P; Xu, J; Peterson, EL; González, GE; Harding, P; Rhaleb, NE

  • Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis

    Peng, J; Gurantz, D; Tran, V; Cowling, RT; Greenberg, BH

  • Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension

    Peng, K; Lu, X; Wang, F; Nau, A; Chen, R; Zhou, SF; Yang, T

  • Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II

    Peng, K; Tian, X; Qian, Y; Skibba, M; Zou, C; Liu, Z; Wang, J; Xu, Z; Li, X; Liang, G

  • MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality

    Pernomian, L; do Prado, AF; Gomes, MS; Pernomian, L; da Silva, CH; Gerlach, RF; de Oliveira, AM

  • Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase hom*ologues in the vasopressor and dipsogenic effects of brain angiotensin II

    Peterson, JR; Burmeister, MA; Tian, X; Zhou, Y; Guruju, MR; Stupinski, JA; Sharma, RV; Davisson, RL

  • Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling

    Pillai, VB; Sundaresan, NR; Kim, G; Samant, S; Moreno-Vinasco, L; Garcia, JG; Gupta, MP

  • 6β-Hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice

    Pingili, AK; Kara, M; Khan, NS; Estes, AM; Lin, Z; Li, W; Gonzalez, FJ; Malik, KU

  • Circulating Exosomes Induced by Cardiac Pressure Overload Contain Functional Angiotensin II Type 1 Receptors

    Pironti, G; Strachan, RT; Abraham, D; Mon-Wei Yu, S; Chen, M; Chen, W; Hanada, K; Mao, L; Watson, LJ; Rockman, HA

  • Fibroblast Angiotensin II Type 1a Receptors Contribute to Angiotensin II-Induced Medial Hyperplasia in the Ascending Aorta

    Poduri, A; Rateri, DL; Howatt, DA; Balakrishnan, A; Moorleghen, JJ; Cassis, LA; Daugherty, A

  • Caveolin-1 ablation reduces the adverse cardiovascular effects of N-omega-nitro-l-arginine methyl ester and angiotensin II

    Pojoga, LH; Romero, JR; Yao, TM; Loutraris, P; Ricchiuti, V; Coutinho, P; Guo, C; Lapointe, N; Stone, JR; Adler, GK; Williams, GH

  • The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case-control cohorts

    Polito, L; Kehoe, PG; Davin, A; Benussi, L; Ghidoni, R; Binetti, G; Quadri, P; Lucca, U; Tettamanti, M; Clerici, F; Bagnoli, S; Galimberti, D; Nacmias, B; Sorbi, S; Guaita, A; Scarpini, E; Mariani, C; Forloni, G; Albani, D

  • The molecular genetics of sirtuins: association with human longevity and age-related diseases

    Polito, L; Kehoe, PG; Forloni, G; Albani, D

  • Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension

    Pollow, DP; Uhrlaub, J; Romero-Aleshire, M; Sandberg, K; Nikolich-Zugich, J; Brooks, HL; Hay, M

  • Angiotensin II synergizes with BAFF to promote atheroprotective regulatory B cells

    Ponnuswamy, P; Joffre, J; Herbin, O; Esposito, B; Laurans, L; Binder, CJ; Tedder, TF; Zeboudj, L; Loyer, X; Giraud, A; Zhang, Y; Tedgui, A; Mallat, Z; Ait-Oufella, H

  • Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor

    Pontes, RB; Crajoinas, RO; Nishi, EE; Oliveira-Sales, EB; Girardi, AC; Campos, RR; Bergamaschi, CT

  • Crosstalk between the renal sympathetic nerve and intrarenal angiotensinII modulates proximal tubular sodium reabsorption

    Pontes, RB; Girardi, AC; Nishi, EE; Campos, RR; Bergamaschi, CT

  • Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy

    Porrello, ER; D’Amore, A; Curl, CL; Allen, AM; Harrap, SB; Thomas, WG; Delbridge, LM

  • The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor

    Porrello, ER; Delbridge, LM; Thomas, WG

  • The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis

    Prabhu, SD; Frangogiannis, NG

  • Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function

    Prasad, AM; Morgan, DA; Nuno, DW; Ketsawatsomkron, P; Bair, TB; Venema, AN; Dibbern, ME; Kutschke, WJ; Weiss, RM; Lamping, KG; Chapleau, MW; Sigmund, CD; Rahmouni, K; Grumbach, IM

  • Differential Control of Calcium Homeostasis and Vascular Reactivity by CaMKII

    Prasad, AM; Nuno, DW; Koval, OM; Ketsawatsomkron, P; Li, W; Li, H; Shen, FY; Joiner, ML; Kutschke, W; Weiss, RM; Sigmund, CD; Anderson, ME; Lamping, KG; Grumbach, IM

  • Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors

    Pruthi, D; McCurley, A; Aronovitz, M; Galayda, C; Karumanchi, SA; Jaffe, IZ

  • Oxidized Ca2+/calmodulin-dependent protein kinase II triggers atrial fibrillation

    Purohit, A; Rokita, AG; Guan, X; Chen, B; Koval, OM; Voigt, N; Neef, S; Sowa, T; Gao, Z; Luczak, ED; Stefansdottir, H; Behunin, AC; Li, N; El-Accaoui, RN; Yang, B; Swaminathan, PD; Weiss, RM; Wehrens, XHT; Song, L-S; Dobrev, D; Maier, LS; Anderson, ME

  • Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice

    Putnam, K; Batifoulier-Yiannikouris, F; Bharadwaj, KG; Lewis, E; Karounos, M; Daugherty, A; Cassis, LA

  • The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome

    Putnam, K; Shoemaker, R; Yiannikouris, F; Cassis, LA

  • Angiotensin II infusion-induced inflammation, monocytic fibroblast precursor infiltration, and cardiac fibrosis are pressure dependent

    Qi, G; Jia, L; Li, Y; Bian, Y; Cheng, J; Li, H; Xiao, C; Du, J

  • Adiponectin suppresses angiotensin II-induced inflammation and cardiac fibrosis through activation of macrophage autophagy

    Qi, GM; Jia, LX; Li, YL; Li, HH; Du, J

  • Aberrant mitochondrial fission in neurons induced by protein kinase Cdelta under oxidative stress conditions in vivo

    Qi, X; Disatnik, MH; Shen, N; Sobel, RA; Mochly-Rosen, D

  • Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium

    Qian, J; Fulton, D

  • Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure

    Qiao, YN; He, WQ; Chen, CP; Zhang, CH; Zhao, W; Wang, P; Zhang, L; Wu, YZ; Yang, X; Peng, YJ; Gao, JM; Kamm, KE; Stull, JT; Zhu, MS

  • Src Family Kinases (SFK) Mediate Angiotensin II-Induced Myosin Light Chain Phosphorylation and Hypertension

    Qin, B; Zhou, J

  • Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress

    Qin, Y; Wang, Y; Liu, O; Jia, L; Fang, W; Du, J; Wei, Y

  • Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3

    Qin, Z; Bagley, J; Sukhova, G; Baur, WE; Park, HJ; Beasley, D; Libby, P; Zhang, Y; Galper, JB

  • Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease

    Raffetto, JD; Khalil, RA

  • Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension

    Ragot, H; Monfort, A; Baudet, M; Azibani, F; Fazal, L; Merval, R; Polidano, E; Cohen-Solal, A; Delcayre, C; Vodovar, N; Chatziantoniou, C; Samuel, JL

  • The role of caveolin-1 in cardiovascular regulation

    Rahman, A; Swärd, K

  • beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress

    Rakesh, K; Yoo, B; Kim, IM; Salazar, N; Kim, KS; Rockman, HA

  • Angiotensinergic stimulation of vascular endothelium in mice causes hypotension, bradycardia, and attenuated angiotensin response

    Ramchandran, R; Takezako, T; Saad, Y; Stull, L; Fink, B; Yamada, H; Dikalov, S; Harrison, DG; Moravec, C; Karnik, SS

  • The nephron (pro)renin receptor: function and significance

    Ramkumar, N; Kohan, DE

  • Angiotensin II-mediated hypertension impairs nitric oxide-induced NKCC2 inhibition in thick ascending limbs

    Ramseyer, VD; Ortiz, PA; Carretero, OA; Garvin, JL

  • Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor-/- mice

    Rateri, DL; Moorleghen, JJ; Balakrishnan, A; Owens, AP; Howatt, DA; Subramanian, V; Poduri, A; Charnigo, R; Cassis, LA; Daugherty, A

  • Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice

    Rateri, DL; Moorleghen, JJ; Knight, V; Balakrishnan, A; Howatt, DA; Cassis, LA; Daugherty, A

  • Regulation of inflammasome signaling

    Rathinam, VA; Vanaja, SK; Fitzgerald, KA

  • Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo

    Ray, R; Murdoch, CE; Wang, M; Santos, CX; Zhang, M; Alom-Ruiz, S; Anilkumar, N; Ouattara, A; Cave, AC; Walker, SJ; Grieve, DJ; Charles, RL; Eaton, P; Brewer, AC; Shah, AM

  • Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease

    Re, RN

  • A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensin II

    Regan, JA; Mauro, AG; Carbone, S; Marchetti, C; Gill, R; Mezzaroma, E; Valle Raleigh, J; Salloum, FN; Van Tassell, BW; Abbate, A; Toldo, S

  • Myocardial angiotensin receptors in human hearts

    Regitz-Zagrosek, V; Fielitz, J; Fleck, E

  • Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats

    Rehman, A; Leibowitz, A; Yamamoto, N; Rautureau, Y; Paradis, P; Schiffrin, EL

  • Angiotensin II induces nephrin dephosphorylation and podocyte injury: role of caveolin-1

    Ren, Z; Liang, W; Chen, C; Yang, H; Singhal, PC; Ding, G

  • Is angiotensin II a direct mediator of left ventricular hypertrophy? Time for another look

    Reudelhuber, TL; Bernstein, KE; Delafontaine, P

  • Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure

    Rickard, AJ; Morgan, J; Tesch, G; Funder, JW; Fuller, PJ; Young, MJ

  • Renin expression in developing zebrafish is associated with angiogenesis and requires the Notch pathway and endothelium

    Rider, SA; Mullins, LJ; Verdon, RF; MacRae, CA; Mullins, JJ

  • Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/- haploinsufficient mice

    Rikitake, Y; Oyama, N; Wang, CY; Noma, K; Satoh, M; Kim, HH; Liao, JK

  • Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli

    Riquier-Brison, AD; Leong, PK; Pihakaski-Maunsbach, K; McDonough, AA

  • Targeting γ-secretases protect against angiotensin II-induced cardiac hypertrophy

    Rivera-Torres, J; Guzmán-Martínez, G; Villa-Bellosta, R; Orbe, J; González-Gómez, C; Serrano, M; Díez, J; Andrés, V; Maraver, A

  • AT2 Receptor-Interacting Proteins ATIPs in the Brain

    Rodrigues-Ferreira, S; le Rouzic, E; Pawlowski, T; Srivastava, A; Margottin-Goguet, F; Nahmias, C

  • An ATIPical family of angiotensin II AT2 receptor-interacting proteins

    Rodrigues-Ferreira, S; Nahmias, C

  • Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation

    Rodriguez-Perez, AI; Borrajo, A; Rodriguez-Pallares, J; Guerra, MJ; Labandeira-Garcia, JL

  • Intrarenal Renin-Angiotensin System: Locally Synthesized or Taken up Via Endocytosis?

    Roman, RJ; Fan, F; Zhuo, JL

  • Vascular and Central Activation of Peroxisome Proliferator-Activated Receptor-β Attenuates Angiotensin II-Induced Hypertension: Role of RGS-5

    Romero, M; Jiménez, R; Toral, M; León-Gómez, E; Gómez-Gúzman, M; Sánchez, M; Zarzuelo, MJ; Rodríguez-Gómez, I; Rath, G; Tamargo, J; Pérez-Vizcaíno, F; Dessy, C; Duarte, J

  • Angiotensin inhibition and malignancies: a review

    Rosenthal, T; Gavras, I

  • Inhibition of adipogenesis by Wnt signaling

    Ross, SE; Hemati, N; Longo, KA; Bennett, CN; Lucas, PC; Erickson, RL; MacDougald, OA

  • Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns

    Rossing, K; Mischak, H; Parving, HH; Christensen, PK; Walden, M; Hillmann, M; Kaiser, T

  • Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action

    Roy, A; Al-Qusairi, L; Donnelly, BF; Ronzaud, C; Marciszyn, AL; Gong, F; Chang, YP; Butterworth, MB; Pastor-Soler, NM; Hallows, KR; Staub, O; Subramanya, AR

  • Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway

    Rozansky, DJ; Cornwall, T; Subramanya, AR; Rogers, S; Yang, YF; David, LL; Zhu, X; Yang, CL; Ellison, DH

  • Interactions Between the Immune and the Renin-Angiotensin Systems in Hypertension

    Rudemiller, NP; Crowley, SD

  • C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration

    Rudemiller, NP; Patel, MB; Zhang, JD; Jeffs, AD; Karlovich, NS; Griffiths, R; Kan, MJ; Buckley, AF; Gunn, MD; Crowley, SD

  • Nitrated fatty acids suppress angiotensin II-mediated fibrotic remodelling and atrial fibrillation

    Rudolph, TK; Ravekes, T; Klinke, A; Friedrichs, K; Mollenhauer, M; Pekarova, M; Ambrozova, G; Martiskova, H; Kaur, JJ; Matthes, B; Schwoerer, A; Woodco*ck, SR; Kubala, L; Freeman, BA; Baldus, S; Rudolph, V

  • Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation

    Rudolph, V; Andrié, RP; Rudolph, TK; Friedrichs, K; Klinke, A; Hirsch-Hoffmann, B; Schwoerer, AP; Lau, D; Fu, X; Klingel, K; Sydow, K; Didié, M; Seniuk, A; von Leitner, EC; Szoecs, K; Schrickel, JW; Treede, H; Wenzel, U; Lewalter, T; Nickenig, G; Zimmermann, WH; Meinertz, T; Böger, RH; Reichenspurner, H; Freeman, BA; Eschenhagen, T; Ehmke, H; Hazen, SL; Willems, S; Baldus, S

  • Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar

    Ruiz-Villalba, A; Simón, AM; Pogontke, C; Castillo, MI; Abizanda, G; Pelacho, B; Sánchez-Domínguez, R; Segovia, JC; Prósper, F; Pérez-Pomares, JM

  • The Rho-kinase pathway regulates angiotensin II-induced renal damage

    Rupérez, M; Sánchez-López, E; Blanco-Colio, LM; Esteban, V; Rodríguez-Vita, J; Plaza, JJ; Egido, J; Ruiz-Ortega, M

  • Whole genome expression analysis within the angiotensin II-apolipoprotein E deficient mouse model of abdominal aortic aneurysm

    Rush, C; Nyara, M; Moxon, JV; Trollope, A; Cullen, B; Golledge, J

  • Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis

    Rüster, C; Wolf, G

  • Long-Term Biased β-Arrestin Signaling Improves Cardiac Structure and Function in Dilated Cardiomyopathy

    Ryba, DM; Li, J; Cowan, CL; Russell, B; Wolska, BM; Solaro, RJ

  • Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer’s disease? An overview of research evidence in the elderly patient population

    Rygiel, K

  • Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor

    Saad, S; Stanners, SR; Yong, R; Tang, O; Pollock, CA

  • Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities

    Saavedra, JM

  • Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer’s Disease

    Saavedra, JM

  • Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: opposing effects in lean and obese Zucker rats

    Sabuhi, R; Ali, Q; Asghar, M; Al-Zamily, NR; Hussain, T

  • Inhibition of NAD(P)H oxidase potentiates AT2 receptor agonist-induced natriuresis in Sprague-Dawley rats

    Sabuhi, R; Asghar, M; Hussain, T

  • Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype

    Sadoshima, J; Izumo, S

  • Distinct Regulatory Effects of Myeloid Cell and Endothelial Cell NAPDH Oxidase 2 on Blood Pressure

    Sag, CM; Schnelle, M; Zhang, J; Murdoch, CE; Kossmann, S; Protti, A; Santos, CXC; Sawyer, G; Zhang, X; Mongue-Din, H; Richards, DA; Brewer, AC; Prysyazhna, O; Maier, LS; Wenzel, P; Eaton, PJ; Shah, AM

  • Cooperation of SRC-1 and p300 with NF-kappaB and CREB in angiotensin II-induced IL-6 expression in vascular smooth muscle cells

    Sahar, S; Reddy, MA; Wong, C; Meng, L; Wang, M; Natarajan, R

  • Importance of endothelial NF-κB signalling in vascular remodelling and aortic aneurysm formation

    Saito, T; Hasegawa, Y; Ishigaki, Y; Yamada, T; Gao, J; Imai, J; Uno, K; Kaneko, K; Ogihara, T; Shimosawa, T; Asano, T; Fujita, T; Oka, Y; Katagiri, H

  • Local production of angiotensin II in the subfornical organ causes elevated drinking

    Sakai, K; Agassandian, K; Morimoto, S; Sinnayah, P; Cassell, MD; Davisson, RL; Sigmund, CD

  • Perivascular Adipose Tissue Angiotensin II Type 1 Receptor Promotes Vascular Inflammation and Aneurysm Formation

    Sakaue, T; Suzuki, J; Hamaguchi, M; Suehiro, C; Tanino, A; Nagao, T; Uetani, T; Aono, J; Nakaoka, H; Kurata, M; Sakaue, T; Okura, T; Yasugi, T; Izutani, H; Higaki, J; Ikeda, S

  • Baroreceptor reflex regulation in anesthetized transgenic rats with low glia-derived angiotensinogen

    Sakima, A; Averill, DB; Kasper, SO; Jackson, L; Ganten, D; Ferrario, CM; Gallagher, PE; Diz, DI

  • Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells

    Salazar, G; Huang, J; Feresin, RG; Zhao, Y; Griendling, KK

  • KLF4 regulates abdominal aortic aneurysm morphology and deletion attenuates aneurysm formation

    Salmon, M; Johnston, WF; Woo, A; Pope, NH; Su, G; Upchurch, GR; Owens, GK; Ailawadi, G

  • Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATP-sensitive potassium channels

    Sampson, LJ; Davies, LM; Barrett-Jolley, R; Standen, NB; Dart, C

  • Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway

    San-Cristobal, P; Pacheco-Alvarez, D; Richardson, C; Ring, AM; Vazquez, N; Rafiqi, FH; Chari, D; Kahle, KT; Leng, Q; Bobadilla, NA; Hebert, SC; Alessi, DR; Lifton, RP; Gamba, G

  • IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system

    Sanada, S; Hakuno, D; Higgins, LJ; Schreiter, ER; McKenzie, AN; Lee, RT

  • The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial

    Sandset, EC; Bath, PM; Boysen, G; Jatuzis, D; Kõrv, J; Lüders, S; Murray, GD; Richter, PS; Roine, RO; Terént, A; Thijs, V; Berge, E

  • ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts

    Sano, M; f*ckuda, K; Sato, T; Kawaguchi, H; Suematsu, M; Matsuda, S; Koyasu, S; Matsui, H; Yamauchi-Takihara, K; Harada, M; Saito, Y; Ogawa, S

  • NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis

    Santillo, M; Colantuoni, A; Mondola, P; Guida, B; Damiano, S

  • Hypertension-Linked Pathophysiological Alterations in the Gut

    Santisteban, MM; Qi, Y; Zubcevic, J; Kim, S; Yang, T; Shenoy, V; Cole-Jeffrey, CT; Lobaton, GO; Stewart, DC; Rubiano, A; Simmons, CS; Garcia-Pereira, F; Johnson, RD; Pepine, CJ; Raizada, MK

  • Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor MAS knockout mice

    Santos, RA; Castro, CH; Gava, E; Pinheiro, SV; Almeida, AP; Paula, RD; Cruz, JS; Ramos, AS; Rosa, KT; Irigoyen, MC; Bader, M; Alenina, N; Kitten, GT; Ferreira, AJ

  • MicroRNAs and Endothelial (Dys) Function

    Santulli, G

  • The genetic basis for aortic aneurysmal disease

    Saratzis, A; Bown, MJ

  • Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor

    Sasaki, K; Yamano, Y; Bardhan, S; Iwai, N; Murray, JJ; Hasegawa, M; Matsuda, Y; Inagami, T

  • Mesenchymal stem cells: molecular targets for tissue engineering

    Satija, NK; Gurudutta, GU; Sharma, S; Afrin, F; Gupta, P; Verma, YK; Singh, VK; Tripathi, RP

  • ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage

    Sato, T; Sato, C; Kadowaki, A; Watanabe, H; Ho, L; Ishida, J; Yamaguchi, T; Kimura, A; f*ckamizu, A; Penninger, JM; Reversade, B; Ito, H; Imai, Y; Kuba, K

  • Role of stimulated intrarenal angiotensinogen in hypertension

    Satou, R; Shao, W; Navar, LG

  • Deciphering biased-agonism complexity reveals a new active AT1 receptor entity

    Saulière, A; Bellot, M; Paris, H; Denis, C; Finana, F; Hansen, JT; Altié, MF; Seguelas, MH; Pathak, A; Hansen, JL; Sénard, JM; Galés, C

  • Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure

    Saxena, A; Little, JT; Nedungadi, TP; Cunningham, JT

  • A novel role for calpain in the endothelial dysfunction induced by activation of angiotensin II type 1 receptor signaling

    Scalia, R; Gong, Y; Berzins, B; Freund, B; Feather, D; Landesberg, G; Mishra, G

  • IL-11 is a crucial determinant of cardiovascular fibrosis

    Schafer, S; Viswanathan, S; Widjaja, AA; Lim, WW; Moreno-Moral, A; DeLaughter, DM; Ng, B; Patone, G; Chow, K; Khin, E; Tan, J; Chothani, SP; Ye, L; Rackham, OJL; Ko, NSJ; Sahib, NE; Pua, CJ; Zhen, NTG; Xie, C; Wang, M; Maatz, H; Lim, S; Saar, K; Blachut, S; Petretto, E; Schmidt, S; Putoczki, T; Guimarães-Camboa, N; Wakimoto, H; van Heesch, S; Sigmundsson, K; Lim, SL; Soon, JL; Chao, VTT; Chua, YL; Tan, TE; Evans, SM; Loh, YJ; Jamal, MH; Ong, KK; Chua, KC; Ong, BH; Chakaramakkil, MJ; Seidman, JG; Seidman, CE; Hubner, N; Sin, KYK; Cook, SA

  • BDNF acting in the hypothalamus induces acute pressor responses under permissive control of angiotensin II

    Schaich, CL; Wellman, TL; Koi, B; Erdos, B

  • Imatinib attenuates end-organ damage in hypertensive hom*ozygous TGR(mRen2)27 rats

    Schellings, MW; Baumann, M; van Leeuwen, RE; Duisters, RF; Janssen, SH; Schroen, B; Peutz-Kootstra, CJ; Heymans, S; Pinto, YM

  • Importance of tyrosine phosphorylation in angiotensin II type 1 receptor signaling

    Schieffer, B; Paxton, WG; Marrero, MB; Bernstein, KE

  • Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen

    Schinke, M; Baltatu, O; Böhm, M; Peters, J; Rascher, W; Bricca, G; Lippoldt, A; Ganten, D; Bader, M

  • Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries

    Schleifenbaum, J; Kassmann, M; Szijártó, IA; Hercule, HC; Tano, JY; Weinert, S; Heidenreich, M; Pathan, AR; Anistan, YM; Alenina, N; Rusch, NJ; Bader, M; Jentsch, TJ; Gollasch, M

  • Reduced incidence of new-onset atrial fibrillation with angiotensin II receptor blockade: the VALUE trial

    Schmieder, RE; Kjeldsen, SE; Julius, S; McInnes, GT; Zanchetti, A; Hua, TA

  • Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase

    Schröder, K; Zhang, M; Benkhoff, S; Mieth, A; Pliquett, R; Kosowski, J; Kruse, C; Luedike, P; Michaelis, UR; Weissmann, N; Dimmeler, S; Shah, AM; Brandes, RP

  • α1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation

    Schuhmacher, S; Foretz, M; Knorr, M; Jansen, T; Hortmann, M; Wenzel, P; Oelze, M; Kleschyov, AL; Daiber, A; Keaney, JF; Wegener, G; Lackner, K; Münzel, T; Viollet, B; Schulz, E

  • Serial analysis of gene expression in mouse kidney following angiotensin II administration

    Schwartz, F; Duka, A; Triantafyllidi, E; Johns, C; Duka, I; Cui, J; Gavras, H

  • Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice

    Schwengel, K; Namsolleck, P; Lucht, K; Clausen, BH; Lambertsen, KL; Valero-Esquitino, V; Thöne-Reineke, C; Müller, S; Widdop, RE; Denton, KM; Horiuchi, M; Iwai, M; Boato, F; Dahlöf, B; Hallberg, A; Unger, T; Steckelings, UM

  • Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload

    Senbonmatsu, T; Ichihara, S; Price, E; Gaffney, FA; Inagami, T

  • A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy

    Senbonmatsu, T; Saito, T; Landon, EJ; Watanabe, O; Price, E; Roberts, RL; Imboden, H; Fitzgerald, TG; Gaffney, FA; Inagami, T

  • Role of T lymphocytes in angiotensin II-mediated microvascular thrombosis

    Senchenkova, EY; Russell, J; Kurmaeva, E; Ostanin, D; Granger, DN

  • Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm

    Sénémaud, J; Caligiuri, G; Etienne, H; Delbosc, S; Michel, JB; Coscas, R

  • Key developments in renin-angiotensin-aldosterone system inhibition

    Sevá Pessôa, B; van der Lubbe, N; Verdonk, K; Roks, AJ; Hoorn, EJ; Danser, AH

  • The mystery of membrane organization: composition, regulation and roles of lipid rafts

    Sezgin, E; Levental, I; Mayor, S; Eggeling, C

  • Myeloid Suppressor Cells Accumulate and Regulate Blood Pressure in Hypertension

    Shah, KH; Shi, P; Giani, JF; Janjulia, T; Bernstein, EA; Li, Y; Zhao, T; Harrison, DG; Bernstein, KE; Shen, XZ

  • Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap

    Shah, SJ; Kitzman, DW; Borlaug, BA; van Heerebeek, L; Zile, MR; Kass, DA; Paulus, WJ

  • BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy

    Shahid, M; Spagnolli, E; Ernande, L; Thoonen, R; Kolodziej, SA; Leyton, PA; Cheng, J; Tainsh, RE; Mayeur, C; Rhee, DK; Wu, MX; Scherrer-Crosbie, M; Buys, ES; Zapol, WM; Bloch, KD; Bloch, DB

  • Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight

    Shamansurova, Z; Tan, P; Ahmed, B; Pepin, E; Seda, O; Lavoie, JL

  • Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy

    Shanmugam, P; Valente, AJ; Prabhu, SD; Venkatesan, B; Yoshida, T; Delafontaine, P; Chandrasekar, B

  • Divergent roles of matrix metalloproteinase 2 in pathogenesis of thoracic aortic aneurysm

    Shen, M; Lee, J; Basu, R; Sakamuri, SS; Wang, X; Fan, D; Kassiri, Z

  • AKT2 confers protection against aortic aneurysms and dissections

    Shen, YH; Zhang, L; Ren, P; Nguyen, MT; Zou, S; Wu, D; Wang, XL; Coselli, JS; LeMaire, SA

  • Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Sheng, L; Yang, M; Ding, W; Zhang, M; Niu, J; Qiao, Z; Gu, Y

  • Glial-specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice

    Sherrod, M; Davis, DR; Zhou, X; Cassell, MD; Sigmund, CD

  • Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation

    Shibata, S; Arroyo, JP; Castañeda-Bueno, M; Puthumana, J; Zhang, J; Uchida, S; Stone, KL; Lam, TT; Lifton, RP

  • Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice

    Shimada, K; Furukawa, H; Wada, K; Wei, Y; Tada, Y; Kuwabara, A; Shikata, F; Kanematsu, Y; Lawton, MT; Kitazato, KT; Nagahiro, S; Hashimoto, T

  • Physiological and pathological cardiac hypertrophy

    Shimizu, I; Minamino, T

  • Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis, and diastolic dysfunction

    Shimizu, T; Narang, N; Chen, P; Yu, B; Knapp, M; Janardanan, J; Blair, J; Liao, JK

  • Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis

    Shimojo, N; Hashizume, R; Kanayama, K; Hara, M; Suzuki, Y; Nishioka, T; Hiroe, M; Yoshida, T; Imanaka-Yoshida, K

  • Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension

    Shinohara, K; Liu, X; Morgan, DA; Davis, DR; Sequeira-Lopez, ML; Cassell, MD; Grobe, JL; Rahmouni, K; Sigmund, CD

  • Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism

    Shinohara, K; Nakagawa, P; Gomez, J; Morgan, DA; Littlejohn, NK; Folchert, MD; Weidemann, BJ; Liu, X; Walsh, SA; Ponto, LL; Rahmouni, K; Grobe, JL; Sigmund, CD

  • Angiotensin II inhibits glucose uptake of skeletal muscle via the adenosine monophosphate-activated protein kinase pathway

    Shinshi, Y; Higashiura, K; Yoshida, D; Togashi, N; Yoshida, H; Miyazaki, Y; Ura, N; Shimamoto, K

  • NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy

    Shirasuna, K; Karasawa, T; Usui, F; Kobayashi, M; Komada, T; Kimura, H; Kawashima, A; Ohkuchi, A; Taniguchi, S; Takahashi, M

  • The role of the renin–angiotensin system in the pathogenesis of intracranial aneurysms

    Shoja, MM; Agutter, PS; Tubbs, RS; Payner, TD; Ghabili, K; Cohen-Gadol, AA

  • Renin-angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease

    Shrikrishna, D; Astin, R; Kemp, PR; Hopkinson, NS

  • Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling

    Shukla, AK; Xiao, K; Lefkowitz, RJ

  • Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats

    Shum, M; Pinard, S; Guimond, MO; Labbé, SM; Roberge, C; Baillargeon, JP; Langlois, MF; Alterman, M; Wallinder, C; Hallberg, A; Carpentier, AC; Gallo-Payet, N

  • Angiotensin II Downregulates MicroRNA-145 to Regulate Kruppel-like Factor 4 and Myocardin Expression in Human Coronary Arterial Smooth Muscle Cells under High Glucose Conditions

    Shyu, KG; Cheng, WP; Wang, BW

  • Organelle-Specific Initiation of Autophagy

    Sica, V; Galluzzi, L; Bravo-San Pedro, JM; Izzo, V; Maiuri, MC; Kroemer, G

  • Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK

    Siddesha, JM; Valente, AJ; Sakamuri, SS; Yoshida, T; Gardner, JD; Somanna, N; Takahashi, C; Noda, M; Chandrasekar, B

  • Docosahexaenoic acid reverses angiotensin II-induced RECK suppression and cardiac fibroblast migration

    Siddesha, JM; Valente, AJ; Yoshida, T; Sakamuri, SS; Delafontaine, P; Iba, H; Noda, M; Chandrasekar, B

  • The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition

    Siddiquee, K; Hampton, J; McAnally, D; May, L; Smith, L

  • Vascular transcriptome profiling identifies sphingosine kinase 1 as a modulator of angiotensin II-induced vascular dysfunction

    Siedlinski, M; Nosalski, R; Szczepaniak, P; Ludwig-Gałęzowska, AH; Mikołajczyk, T; Filip, M; Osmenda, G; Wilk, G; Nowak, M; Wołkow, P; Guzik, TJ

  • No Brain Renin-Angiotensin System: Déjà vu All Over Again?

    Sigmund, CD; Diz, DI; Chappell, MC

  • ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis

    Simões e Silva, AC; Silveira, KD; Ferreira, AJ; Teixeira, MM

  • Angiotensin Receptors: Structure, Function, Signaling and Clinical Applications

    Singh, KD; Karnik, SS

  • Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy, and Inflammatory Gene Expression

    Singh, MV; Cicha, MZ; Meyerholz, DK; Chapleau, MW; Abboud, FM

  • TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice

    Singh, P; Bahrami, L; Castillo, A; Majid, DS

  • Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation

    Sinn, PL; Sigmund, CD

  • Protein kinase D1 mediates class IIa histone deacetylase phosphorylation and nuclear extrusion in intestinal epithelial cells: role in mitogenic signaling

    Sinnett-Smith, J; Ni, Y; Wang, J; Ming, M; Young, SH; Rozengurt, E

  • NOX isoforms in the development of abdominal aortic aneurysm

    Siu, KL; Li, Q; Zhang, Y; Guo, J; Youn, JY; Du, J; Cai, H

  • The CD4(+) AT2R(+) T cell subpopulation improves post-infarction remodelling and restores cardiac function

    Skorska, A; von Haehling, S; Ludwig, M; Lux, CA; Gaebel, R; Kleiner, G; Klopsch, C; Dong, J; Curato, C; Altarche-Xifró, W; Slavic, S; Unger, T; Steinhoff, G; Li, J; David, R

  • The subfornical organ: a central nervous system site for actions of circulating leptin

    Smith, PM; Chambers, AP; Price, CJ; Ho, W; Hopf, C; Sharkey, KA; Ferguson, AV

  • Acetylation of cyclophilin A is required for its secretion and vascular cell activation

    Soe, NN; Sowden, M; Baskaran, P; Kim, Y; Nigro, P; Smolock, EM; Berk, BC

  • Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells

    Soe, NN; Sowden, M; Baskaran, P; Smolock, EM; Kim, Y; Nigro, P; Berk, BC

  • The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4

    Somanna, NK; Valente, AJ; Krenz, M; Fay, WP; Delafontaine, P; Chandrasekar, B

  • Myocardial fibrosis in response to Angiotensin II is preceded by the recruitment of mesenchymal progenitor cells

    Sopel, MJ; Rosin, NL; Lee, TD; Légaré, JF

  • Microdomains, Inflammation, and Atherosclerosis

    Sorci-Thomas, MG; Thomas, MJ

  • TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression

    Souza, ACP; Tsuji, T; Baranova, IN; Bocharov, AV; Wilkins, KJ; Street, JM; Alvarez-Prats, A; Hu, X; Eggerman, T; Yuen, PST; Star, RA

  • Inhibition of c-Src tyrosine kinase prevents angiotensin II-mediated connexin-43 remodeling and sudden cardiac death

    Sovari, AA; Iravanian, S; Dolmatova, E; Jiao, Z; Liu, H; Zandieh, S; Kumar, V; Wang, K; Bernstein, KE; Bonini, MG; Duffy, HS; Dudley, SC

  • Classical Renin-Angiotensin system in kidney physiology

    Sparks, MA; Crowley, SD; Gurley, SB; Mirotsou, M; Coffman, TM

  • Angiotensin II type 1A receptors in vascular smooth muscle cells do not influence aortic remodeling in hypertension

    Sparks, MA; Parsons, KK; Stegbauer, J; Gurley, SB; Vivekanandan-Giri, A; Fortner, CN; Snouwaert, J; Raasch, EW; Griffiths, RC; Haystead, TA; Le, TH; Pennathur, S; Koller, B; Coffman, TM

  • Vascular Type 1A Angiotensin II Receptors Control BP by Regulating Renal Blood Flow and Urinary Sodium Excretion

    Sparks, MA; Stegbauer, J; Chen, D; Gomez, JA; Griffiths, RC; Azad, HA; Herrera, M; Gurley, SB; Coffman, TM

  • Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm

    Spin, JM; Hsu, M; Azuma, J; Tedesco, MM; Deng, A; Dyer, JS; Maegdefessel, L; Dalman, RL; Tsao, PS

  • Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms

    Spitler, KM; Webb, RC

  • Tumor Necrosis Factor - Alpha Is Essential for Angiotensin II-Induced Ventricular Remodeling: Role for Oxidative Stress

    Sriramula, S; Francis, J

  • Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy

    Sriramula, S; Haque, M; Majid, DS; Francis, J

  • The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes

    Stalker, TJ; Gong, Y; Scalia, R

  • A novel role for calpains in the endothelial dysfunction of hyperglycemia

    Stalker, TJ; Skvarka, CB; Scalia, R

  • Critical role of TNF-α in cerebral aneurysm formation and progression to rupture

    Starke, RM; Chalouhi, N; Jabbour, PM; Tjoumakaris, SI; Gonzalez, LF; Rosenwasser, RH; Wada, K; Shimada, K; Hasan, DM; Greig, NH; Owens, GK; Dumont, AS

  • MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis

    Stawski, L; Haines, P; Fine, A; Rudnicka, L; Trojanowska, M

  • Efficient liver-specific deletion of a floxed human angiotensinogen transgene by adenoviral delivery of Cre recombinase in vivo

    Stec, DE; Davisson, RL; Haskell, RE; Davidson, BL; Sigmund, CD

  • Lower blood pressure in floxed angiotensinogen mice after adenoviral delivery of Cre-recombinase

    Stec, DE; Keen, HL; Sigmund, CD

  • The angiotensin AT2 receptor in left ventricular hypertrophy

    Steckelings, UM; Widdop, RE; Paulis, L; Unger, T

  • Resistance to hypertension mediated by intercalated cells of the collecting duct

    Stegbauer, J; Chen, D; Herrera, M; Sparks, MA; Yang, T; Königshausen, E; Gurley, SB; Coffman, TM

  • AT1 receptors in the collecting duct directly modulate the concentration of urine

    Stegbauer, J; Gurley, SB; Sparks, MA; Woznowski, M; Kohan, DE; Yan, M; Lehrich, RW; Coffman, TM

  • Astrocytes Contribute to Angiotensin II Stimulation of Hypothalamic Neuronal Activity and Sympathetic Outflow

    Stern, JE; Son, S; Biancardi, VC; Zheng, H; Sharma, N; Patel, KP

  • Astrocytes synthesize angiotensinogen in brain

    Stornetta, RL; Hawelu-Johnson, CL; Guyenet, PG; Lynch, KR

  • Smooth muscle-selective CPI-17 expression increases vascular smooth muscle contraction and blood pressure

    Su, W; Xie, Z; Liu, S; Calderon, LE; Guo, Z; Gong, MC

  • Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice

    Subramanian, V; Moorleghen, JJ; Balakrishnan, A; Howatt, DA; Chishti, AH; Uchida, HA

  • Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in Low-Density Lipoprotein Receptor Deficient Mice

    Subramanian, V; Uchida, HA; Ijaz, T; Moorleghen, JJ; Howatt, DA; Balakrishnan, A

  • Differential roles of endothelin-1 in angiotensin II-induced atherosclerosis and aortic aneurysms in apolipoprotein E-null mice

    Suen, RS; Rampersad, SN; Stewart, DJ; Courtman, DW

  • Angiotensin II, oxidative stress and skeletal muscle wasting

    Sukhanov, S; Semprun-Prieto, L; Yoshida, T; Michael Tabony, A; Higashi, Y; Galvez, S; Delafontaine, P

  • Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition

    Sullivan, JC

  • Angiotensin (1-7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats

    Sullivan, JC; Bhatia, K; Yamamoto, T; Elmarakby, AA

  • Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling

    Sumida, T; Naito, AT; Nomura, S; Nakagawa, A; Higo, T; Hashimoto, A; Okada, K; Sakai, T; Ito, M; Yamaguchi, T; Oka, T; Akazawa, H; Lee, JK; Minamino, T; Offermanns, S; Noda, T; Botto, M; Kobayashi, Y; Morita, H; Manabe, I; Nagai, T; Shiojima, I; Komuro, I

  • Angiotensin type 2 receptors: blood pressure regulation and end organ damage

    Sumners, C; de Kloet, AD; Krause, EG; Unger, T; Steckelings, UM

  • Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy

    Sun, B; Huo, R; Sheng, Y; Li, Y; Xie, X; Chen, C; Liu, HB; Li, N; Li, CB; Guo, WT; Zhu, JX; Yang, BF; Dong, DL

  • Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway

    Sun, J; Luo, J; Ruan, Y; Xiu, L; Fang, B; Zhang, H; Wang, M; Chen, H

  • Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney

    Sun, P; Yue, P; Wang, WH

  • Deletion of proton-sensing receptor GPR4 associates with lower blood pressure and lower binding of angiotensin II receptor in SFO

    Sun, X; Tommasi, E; Molina, D; Sah, R; Brosnihan, KB; Diz, D; Petrovic, S

  • T-Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon-Gamma

    Sun, XN; Li, C; Liu, Y; Du, LJ; Zeng, MR; Zheng, XJ; Zhang, WC; Liu, Y; Zhu, M; Kong, D; Zhou, L; Lu, L; Shen, ZX; Yi, Y; Du, L; Qin, M; Liu, X; Hua, Z; Sun, S; Yin, H; Zhou, B; Yu, Y; Zhang, Z; Duan, SZ

  • Activation of endothelial nitric oxide synthase by the angiotensin II type 1 receptor

    Suzuki, H; Eguchi, K; Ohtsu, H; Higuchi, S; Dhobale, S; Frank, GD; Motley, ED; Eguchi, S

  • Endothelial nitric oxide synthase inhibits G12/13 and rho-kinase activated by the angiotensin II type-1 receptor: implication in vascular migration

    Suzuki, H; Kimura, K; Shirai, H; Eguchi, K; Higuchi, S; Hinoki, A; Ishimaru, K; Brailoiu, E; Dhanasekaran, DN; Stemmle, LN; Fields, TA; Frank, GD; Autieri, MV; Eguchi, S

  • Investigation of the fate of type I angiotensin receptor after biased activation

    Szakadáti, G; Tóth, AD; Oláh, I; Erdélyi, LS; Balla, T; Várnai, P; Hunyady, L; Balla, A

  • Allosteric interactions within the AT1 angiotensin receptor hom*odimer: role of the conserved DRY motif

    Szalai, B; Barkai, L; Turu, G; Szidonya, L; Várnai, P; Hunyady, L

  • Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Tabas, I; Bornfeldt, KE

  • Protein phosphatase 2C-alpha knockdown reduces angiotensin II-mediated skeletal muscle wasting via restoration of mitochondrial recycling and function

    Tabony, AM; Yoshida, T; Sukhanov, S; Delafontaine, P

  • Photoreleasable ligands to study intracrine angiotensin II signalling

    Tadevosyan, A; Létourneau, M; Folch, B; Doucet, N; Villeneuve, LR; Mamarbachi, AM; Pétrin, D; Hébert, TE; Fournier, A; Chatenet, D; Allen, BG; Nattel, S

  • Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion

    Tadevosyan, A; Xiao, J; Surinkaew, S; Naud, P; Merlen, C; Harada, M; Qi, X; Chatenet, D; Fournier, A; Allen, BG; Nattel, S

  • The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy

    Taglieri, DM; Johnson, KR; Burmeister, BT; Monasky, MM; Spindler, MJ; DeSantiago, J; Banach, K; Conklin, BR; Carnegie, GK

  • Glucose and angiotensin II-derived endothelial extracellular vesicles regulate endothelial dysfunction via ERK1/2 activation

    Taguchi, K; Hida, M; Narimatsu, H; Matsumoto, T; Kobayashi, T

  • Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II

    Takaguri, A; Shirai, H; Kimura, K; Hinoki, A; Eguchi, K; Carlile-Klusacek, M; Yang, B; Rizzo, V; Eguchi, S

  • Noradrenaline receptor mechanisms modulate the angiotensin II-induced water intake in the subfornical organ in rats

    Takahashi, M; Tanaka, J

  • Detrimental Effects of Centrally Administered Angiotensin II are Enhanced in a Mouse Model of Alzheimer Disease Independently ofBlood Pressure

    Takane, K; Hasegawa, Y; Lin, B; Koibuchi, N; Cao, C; Yokoo, T; Kim-Mitsuyama, S

  • PPARdelta-mediated anti-inflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis

    Takata, Y; Liu, J; Yin, F; Collins, AR; Lyon, CJ; Lee, CH; Atkins, AR; Downes, M; Barish, GD; Evans, RM; Hsueh, WA; Tangirala, RK

  • Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction

    Takawale, A; Zhang, P; Patel, VB; Wang, X; Oudit, G; Kassiri, Z

  • Constitutive stimulation of vascular smooth muscle cells by angiotensin II derived from an adenovirus encoding a furin-cleavable fusion protein

    Takayanagi, T; Bourne, AM; Kimura, K; Takaguri, A; Elliott, KJ; Eguchi, K; Eguchi, S

  • Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase

    Takayanagi, T; Crawford, KJ; Kobayashi, T; Obama, T; Tsuji, T; Elliott, KJ; Hashimoto, T; Rizzo, V; Eguchi, S

  • Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II

    Takayanagi, T; Forrester, SJ; Kawai, T; Obama, T; Tsuji, T; Elliott, KJ; Nuti, E; Rossello, A; Kwok, HF; Scalia, R; Rizzo, V; Eguchi, S

  • Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II

    Takayanagi, T; Kawai, T; Forrester, SJ; Obama, T; Tsuji, T; f*ckuda, Y; Elliott, KJ; Tilley, DG; Davisson, RL; Park, JY; Eguchi, S

  • G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure

    Takefuji, M; Wirth, A; Lukasova, M; Takefuji, S; Boettger, T; Braun, T; Althoff, T; Offermanns, S; Wettschureck, N

  • SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS

    Tan, CK; Tan, EH; Luo, B; Huang, CL; Loo, JS; Choong, C; Tan, NS

  • Prorenin/renin receptor blockade promotes a healthy fat distribution in obese mice

    Tan, P; Blais, C; Nguyen, TM; Schiller, PW; Gutkowska, J; Lavoie, JL

  • Impact of the prorenin/renin receptor on the development of obesity and associated cardiometabolic risk factors

    Tan, P; Shamansurova, Z; Bisotto, S; Michel, C; Gauthier, MS; Rabasa-Lhoret, R; Nguyen, TM; Schiller, PW; Gutkowska, J; Lavoie, JL

  • The novel angiotensin II type 1 receptor (AT1R)-associated protein ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy

    Tanaka, Y; Tamura, K; Koide, Y; Sakai, M; Tsurumi, Y; Noda, Y; Umemura, M; Ishigami, T; Uchino, K; Kimura, K; Horiuchi, M; Umemura, S

  • Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model

    Tarigopula, M; Davis, RT; Mungai, PT; Ryba, DM; Wieczorek, DF; Cowan, CL; Violin, JD; Wolska, BM; Solaro, RJ

  • Hypertension: renin-angiotensin-aldosterone system alterations

    Te Riet, L; van Esch, JH; Roks, AJ; van den Meiracker, AH; Danser, AH

  • The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand?

    Ter Horst, P; Smits, JF; Blankesteijn, WM

  • G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A

    Tetzner, A; Gebolys, K; Meinert, C; Klein, S; Uhlich, A; Trebicka, J; Villacañas, Ó; Walther, T

  • NF-κB-mediated integrin-linked kinase regulation in angiotensin II-induced pro-fibrotic process in cardiac fibroblasts

    Thakur, S; Li, L; Gupta, S

  • Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets

    Tham, YK; Bernardo, BC; Ooi, JY; Weeks, KL; McMullen, JR

  • Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways

    Than, A; Leow, MK; Chen, P

  • Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice

    Thomas, M; Gavrila, D; McCormick, ML; Miller, FJ; Daugherty, A; Cassis, LA; Dellsperger, KC; Weintraub, NL

  • Identification of a Ca2+/calmodulin-binding domain within the carboxyl-terminus of the angiotensin II (AT1A) receptor

    Thomas, WG; Pipolo, L; Qian, H

  • The diagnosis and management of aortic dissection

    Thrumurthy, SG; Karthikesalingam, A; Patterson, BO; Holt, PJ; Thompson, MM

  • Blockade of the RAS increases plasma adiponectin in subjects with metabolic syndrome and enhances differentiation and adiponectin expression of human preadipocytes

    Tian, F; Luo, R; Zhao, Z; Wu, Y; Ban, D

  • G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function

    Tilley, DG

  • Role of angiotensin II type 1 receptors in the subfornical organ in the pressor responses to central sodium in rats

    Tiruneh, MA; Huang, BS; Leenen, FH

  • Atypical signaling and functional desensitization response of MAS receptor to peptide ligands

    Tirupula, KC; Desnoyer, R; Speth, RC; Karnik, SS

  • G protein-coupled receptors directly bind filamin A with high affinity and promote filamin phosphorylation

    Tirupula, KC; Ithychanda, SS; Mohan, ML; Naga Prasad, SV; Qin, J; Karnik, SS

  • Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies

    Torika, N; Asraf, K; Danon, A; Apte, RN; Fleisher-Berkovich, S

  • Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice

    Toth, P; Csiszar, A; Tucsek, Z; Sosnowska, D; Gautam, T; Koller, A; Schwartzman, ML; Sonntag, WE; Ungvari, Z

  • Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation

    Touyz, RM; Cruzado, M; Tabet, F; Yao, G; Salomon, S; Schiffrin, EL

  • Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase

    Touyz, RM; Mercure, C; He, Y; Javeshghani, D; Yao, G; Callera, GE; Yogi, A; Lochard, N; Reudelhuber, TL

  • Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells

    Touyz, RM; Schiffrin, EL

  • Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats

    Touyz, RM; Wu, XH; He, G; Salomon, S; Schiffrin, EL

  • c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells

    Touyz, RM; Yao, G; Schiffrin, EL

  • Angiotensin II infusion into ApoE-/- mice: a model for aortic dissection rather than abdominal aortic aneurysm?

    Trachet, B; Aslanidou, L; Piersigilli, A; Fraga-Silva, RA; Sordet-Dessimoz, J; Villanueva-Perez, P; Stampanoni, MFM; Stergiopulos, N; Segers, P

  • Cardiac Fibrosis: The Fibroblast Awakens

    Travers, JG; Kamal, FA; Robbins, J; Yutzey, KE; Blaxall, BC

  • β-Arrestin-2 deficiency attenuates abdominal aortic aneurysm formation in mice

    Trivedi, DB; Loftin, CD; Clark, J; Myers, P; DeGraff, LM; Cheng, J; Zeldin, DC; Langenbach, R

  • Oligoclonal CD8+ T cells play a critical role in the development of hypertension

    Trott, DW; Thabet, SR; Kirabo, A; Saleh, MA; Itani, H; Norlander, AE; Wu, J; Goldstein, A; Arendshorst, WJ; Madhur, MS; Chen, W; Li, CI; Shyr, Y; Harrison, DG

  • Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling

    Tsai, CT; Lai, LP; Kuo, KT; Hwang, JJ; Hsieh, CS; Hsu, KL; Tseng, CD; Tseng, YZ; Chiang, FT; Lin, JL

  • Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence

    Tsai, IC; Pan, ZC; Cheng, HP; Liu, CH; Lin, BT; Jiang, MJ

  • Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    Tsukuda, K; Mogi, M; Iwanami, J; Kanno, H; Nakaoka, H; Wang, XL; Bai, HY; Shan, BS; Kukida, M; Higaki, A; Yamauchi, T; Min, LJ; Horiuchi, M

  • Angiotensin II Stimulation of Cardiac Hypertrophy and Functional Decompensation in Osteoprotegerin-Deficient Mice

    Tsuruda, T; Sekita-Hatakeyama, Y; Hao, Y; Sakamoto, S; Kurogi, S; Nakamura, M; Udagawa, N; Funamoto, T; Sekimoto, T; Hatakeyama, K; Chosa, E; Kato, J; Asada, Y; Kitamura, K

  • Interacting molecule of AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal tubules

    Tsurumi, Y; Tamura, K; Tanaka, Y; Koide, Y; Sakai, M; Yabana, M; Noda, Y; Hashimoto, T; Kihara, M; Hirawa, N; Toya, Y; Kiuchi, Y; Iwai, M; Horiuchi, M; Umemura, S

  • IRF3 regulates cardiac fibrosis but not hypertrophy in mice during angiotensin II-induced hypertension

    Tsushima, K; Osawa, T; Yanai, H; Nakajima, A; Takaoka, A; Manabe, I; Ohba, Y; Imai, Y; Taniguchi, T; Nagai, R

  • Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation

    Tsutsumi, Y; Matsubara, H; Masaki, H; Kurihara, H; Murasawa, S; Takai, S; Miyazaki, M; Nozawa, Y; Ozono, R; Nakagawa, K; Miwa, T; Kawada, N; Mori, Y; Shibasaki, Y; Tanaka, Y; Fujiyama, S; Koyama, Y; Fujiyama, A; Takahashi, H; Iwasaka, T

  • Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice

    Uchida, HA; Kristo, F; Rateri, DL; Lu, H; Charnigo, R; Cassis, LA; Daugherty, A

  • Long noncoding RNAs in cardiovascular diseases

    Uchida, S; Dimmeler, S

  • Non-ACE pathway-induced angiotensin II production

    Uehara, Y; Miura, S; Yahiro, E; Saku, K

  • Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles

    Umesalma, S; Houwen, FK; Baumbach, GL; Chan, SL

  • The renin angiotensin aldosterone system and insulin resistance in humans

    Underwood, PC; Adler, GK

  • Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm

    Usui, F; Shirasuna, K; Kimura, H; Tatsumi, K; Kawashima, A; Karasawa, T; Yoshimura, K; Aoki, H; Tsutsui, H; Noda, T; Sagara, J; Taniguchi, S; Takahashi, M

  • Death-associated protein kinase 3 mediates vascular inflammation and development of hypertension in spontaneously hypertensive rats

    Usui, T; Okada, M; Hara, Y; Yamawaki, H

  • Mechanisms of benefit of angiotensin receptor blockers in coronary atherosclerosis

    Vaccari, CS; Lerakis, S; Hammoud, R; Khan, BV

  • CIKS (Act1 or TRAF3IP2) mediates Angiotensin-II-induced Interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy

    Valente, AJ; Clark, RA; Siddesha, JM; Siebenlist, U; Chandrasekar, B

  • Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone

    Van der Lubbe, N; Lim, CH; Fenton, RA; Meima, ME; Jan Danser, AH; Zietse, R; Hoorn, EJ

  • Cardiac phenotype and angiotensin II levels in AT1a, AT1b, and AT2 receptor single, double, and triple knockouts

    Van Esch, JH; Gembardt, F; Sterner-Kock, A; Heringer-Walther, S; Le, TH; Lassner, D; Stijnen, T; Coffman, TM; Schultheiss, HP; Danser, AH; Walther, T

  • The art of microRNA research

    Van Rooij, E

  • Brain Renin-Angiotensin System: Does It Exist?

    Van Thiel, BS; Góes Martini, A; Te Riet, L; Severs, D; Uijl, E; Garrelds, IM; Leijten, FPJ; van der Pluijm, I; Essers, J; Qadri, F; Alenina, N; Bader, M; Paulis, L; Rajkovicova, R; Domenig, O; Poglitsch, M; Danser, AHJ

  • Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis

    Vasamsetti, SB; Karnewar, S; Kanugula, AK; Thatipalli, AR; Kumar, JM; Kotamraju, S

  • Genetics: influence of TOR kinase on lifespan in C. elegans

    Vellai, T; Takacs-Vellai, K; Zhang, Y; Kovacs, AL; Orosz, L; Müller, F

  • Cross-talk between the insulin and angiotensin signaling systems

    Velloso, LA; Folli, F; Sun, XJ; White, MF; Saad, MJ; Kahn, CR

  • Angiotensin II-induced association of phospholipase Cgamma1 with the G-protein-coupled AT1 receptor

    Venema, RC; Ju, H; Venema, VJ; Schieffer, B; Harp, JB; Ling, BN; Eaton, DC; Marrero, MB

  • The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad

    Verdonk, K; Visser, W; Van Den Meiracker, AH; Danser, AH

  • The biological functions of miRNAs: lessons from in vivo studies

    Vidigal, JA; Ventura, A

  • Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension

    Vinh, A; Chen, W; Blinder, Y; Weiss, D; Taylor, WR; Goronzy, JJ; Weyand, CM; Harrison, DG; Guzik, TJ

  • Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance

    Violin, JD; DeWire, SM; Yamash*ta, D; Rominger, DH; Nguyen, L; Schiller, K; Whalen, EJ; Gowen, M; Lark, MW

  • Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension

    Vital, SA; Terao, S; Nagai, M; Granger, DN

  • Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy

    Von Lueder, TG; Wang, BH; Kompa, AR; Huang, L; Webb, R; Jordaan, P; Atar, D; Krum, H

  • TRIF adaptor signaling is important in abdominal aortic aneurysm formation

    Vorkapic, E; Lundberg, AM; Mäyränpää, MI; Eriksson, P; Wågsäter, D

  • Angiotensin II, from vasoconstrictor to growth factor: a paradigm shift

    Vukelic, S; Griendling, KK

  • NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII

    Wagner, S; Dantz, C; Flebbe, H; Azizian, A; Sag, CM; Engels, S; Möllencamp, J; Dybkova, N; Islam, T; Shah, AM; Maier, LS

  • Angiotensin II Peptide Vaccine Protects Ischemic Brain Through Reducing Oxidative Stress

    Wakayama, K; Shimamura, M; Suzuki, JI; Watanabe, R; Koriyama, H; Akazawa, H; Nakagami, H; Mochizuki, H; Isobe, M; Morish*ta, R

  • Cardiac-specific activation of angiotensin II type 1 receptor-associated protein completely suppresses cardiac hypertrophy in chronic angiotensin II-infused mice

    Wakui, H; Tamura, K; Tanaka, Y; Matsuda, M; Bai, Y; Dejima, T; Masuda, S; Shigenaga, A; Maeda, A; Mogi, M; Ichihara, N; Kobayashi, Y; Hirawa, N; Ishigami, T; Toya, Y; Yabana, M; Horiuchi, M; Minamisawa, S; Umemura, S

  • Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats

    Walters, PE; Gaspari, TA; Widdop, RE

  • Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl− channel, contributes to spontaneous hypertension

    Wang, B; Li, C; Huai, R; Qu, Z

  • COX-2 mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla

    Wang, F; Lu, X; Peng, K; Zhou, L; Li, C; Wang, W; Yu, X; Kohan, DE; Zhu, S-F; Yang, T

  • Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons

    Wang, G; Coleman, CG; Chan, J; Faraco, G; Marques-Lopes, J; Milner, TA; Guruju, MR; Anrather, J; Davisson, RL; Iadecola, C; Pickel, VM

  • Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II - induced hypothalamic reactive oxygen species and hypertension

    Wang, HW; Huang, BS; White, RA; Chen, A; Ahmad, M; Leenen, FH

  • NADPH oxidases mediate a cellular “memory” of angiotensin II stress in hypertensive cardiac hypertrophy

    Wang, HX; Yang, H; Han, QY; Li, N; Jiang, X; Tian, C; Du, J; Li, HH

  • LncDisease: a sequence based bioinformatics tool for predicting lncRNA-disease associations

    Wang, J; Ma, R; Ma, W; Chen, J; Yang, J; Xi, Y; Cui, Q

  • The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489

    Wang, K; Liu, F; Zhou, LY; Long, B; Yuan, SM; Wang, Y; Liu, CY; Sun, T; Zhang, XJ; Li, PF

  • Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation

    Wang, L; Li, YL; Zhang, CC; Cui, W; Wang, X; Xia, Y; Du, J; Li, HH

  • Protective role of ACE2-Ang-(1-7)-Mas in myocardial fibrosis by downregulating KCa3.1 channel via ERK1/2 pathway

    Wang, LP; Fan, SJ; Li, SM; Wang, XJ; Gao, JL; Yang, XH

  • Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis

    Wang, M; Kim, SH; Monticone, RE; Lakatta, EG

  • Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2

    Wang, N; Frank, GD; Ding, R; Tan, Z; Rachakonda, A; Pandolfi, PP; Senbonmatsu, T; Landon, EJ; Inagami, T

  • New insights into the roles of Xin repeat-containing proteins in cardiac development, function, and disease

    Wang, Q; Lin, JL; Erives, AJ; Lin, CI; Lin, JJ

  • The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling

    Wang, RH; He, JP; Su, ML; Luo, J; Xu, M; Du, XD; Chen, HZ; Wang, WJ; Wang, Y; Zhang, N; Zhao, BX; Zhao, WX; Shan, ZG; Han, J; Chang, C; Wu, Q

  • Src is required for mechanical stretch-induced cardiomyocyte hypertrophy through angiotensin II type 1 receptor-dependent β-arrestin2 pathways

    Wang, S; Gong, H; Jiang, G; Ye, Y; Wu, J; You, J; Zhang, G; Sun, A; Komuro, I; Ge, J; Zou, Y

  • Activation of AMP-activated protein kinase α2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo

    Wang, S; Zhang, C; Zhang, M; Liang, B; Zhu, H; Lee, J; Viollet, B; Xia, L; Zhang, Y; Zou, M-H

  • SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis

    Wang, TN; Chen, X; Li, R; Gao, B; Mohammed-Ali, Z; Lu, C; Yum, V; Dickhout, JG; Krepinsky, JC

  • Essential role of Smad3 in angiotensin II-induced vascular fibrosis

    Wang, W; Huang, XR; Canlas, E; Oka, K; Truong, LD; Deng, C; Bhowmick, NA; Ju, W; Bottinger, EP; Lan, HY

  • Regulation of potassium (K) handling in the renal collecting duct

    Wang, W-H; Giebisch, G

  • Matrix metalloproteinase-2 mediates a mechanism of metabolic cardioprotection consisting of negative regulation of the sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-CoA reductase pathway in the heart

    Wang, X; Berry, E; Hernandez-Anzaldo, S; Takawale, A; Kassiri, Z; Fernandez-Patron, C

  • Regulation of autophagy and apoptosis in response to angiotensin II in HL-1 cardiomyocytes

    Wang, X; Dai, Y; Ding, Z; Khaidakov, M; Mercanti, F; Mehta, JL

  • Tumor necrosis factor-alpha-converting enzyme is a key regulator of agonist-induced cardiac hypertrophy and fibrosis

    Wang, X; Oka, T; Chow, FL; Cooper, SB; Odenbach, J; Lopaschuk, GD; Kassiri, Z; Fernandez-Patron, C

  • MicroRNA Let-7i negatively regulates cardiac inflammation and fibrosis

    Wang, X; Wang, HX; Li, YL; Zhang, CC; Zhou, CY; Wang, L; Xia, YL; Du, J; Li, HH

  • TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice

    Wang, Y; Ait-Oufella, H; Herbin, O; Bonnin, P; Ramkhelawon, B; Taleb, S; Huang, J; Offenstadt, G; Combadière, C; Rénia, L; Johnson, JL; Tharaux, PL; Tedgui, A; Mallat, Z

  • Mouse models of intracranial aneurysm

    Wang, Y; Emeto, TI; Lee, J; Marshman, L; Moran, C; Seto, SW; Golledge, J

  • Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway

    Wang, Y; Kuro-o, M; Sun, Z

  • Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice

    Wassmann, S; Czech, T; van Eickels, M; Fleming, I; Böhm, M; Nickenig, G

  • Nicotinamide Phosphoribosyltransferase in Smooth Muscle Cells Maintains Genome Integrity, Resists Aortic Medial Degeneration, and Is Suppressed in Human Thoracic Aortic Aneurysm Disease

    Watson, A; Nong, Z; Yin, H; O’Neil, C; Fox, S; Balint, B; Guo, L; Leo, O; Chu, MWA; Gros, R; Pickering, JG

  • Myofibroblast-mediated mechanisms of pathological remodelling of the heart

    Weber, KT; Sun, Y; Bhattacharya, SK; Ahokas, RA; Gerling, IC

  • NF-κB mediated miR-26a regulation in cardiac fibrosis

    Wei, C; Kim, IK; Kumar, S; Jayasinghe, S; Hong, N; Castoldi, G; Catalucci, D; Jones, WK; Gupta, S

  • Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2

    Wei, H; Ahn, S; Shenoy, SK; Karnik, SS; Hunyady, L; Luttrell, LM; Lefkowitz, RJ

  • MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a

    Wei, L; Yuan, M; Zhou, R; Bai, Q; Zhang, W; Zhang, M; Huang, Y; Shi, L

  • Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling

    Wei, LH; Huang, XR; Zhang, Y; Li, YQ; Chen, HY; Yan, BP; Yu, CM; Lan, HY

  • Sirtuin 3 Deficiency Accelerates Hypertensive Cardiac Remodeling by Impairing Angiogenesis

    Wei, T; Huang, G; Gao, J; Huang, C; Sun, M; Wu, J; Bu, J; Shen, W

  • Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction

    Wei, Y; Zavilowitz, B; Satlin, LM; Wang, WH

  • Deoxycorticosterone acetate salt hypertension in apolipoprotein E-/- mice results in accelerated atherosclerosis: the role of angiotensin II

    Weiss, D; Taylor, WR

  • Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy

    Weng, X; Yu, L; Liang, P; Chen, D; Cheng, X; Yang, Y; Li, L; Zhang, T; Zhou, B; Wu, X; Xu, H; Fang, M; Gao, Y; Chen, Q; Xu, Y

  • A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy

    Weng, X; Yu, L; Liang, P; Li, L; Dai, X; Zhou, B; Wu, X; Xu, H; Fang, M; Chen, Q; Xu, Y

  • The Hippo pathway is controlled by Angiotensin II signaling and its reactivation induces apoptosis in podocytes

    Wennmann, DO; Vollenbröker, B; Eckart, AK; Bonse, J; Erdmann, F; Wolters, DA; Schenk, LK; Schulze, U; Kremerskothen, J; Weide, T; Pavenstädt, H

  • Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction

    Wenzel, P; Knorr, M; Kossmann, S; Stratmann, J; Hausding, M; Schuhmacher, S; Karbach, SH; Schwenk, M; Yogev, N; Schulz, E; Oelze, M; Grabbe, S; Jonuleit, H; Becker, C; Daiber, A; Waisman, A; Münzel, T

  • Immune Mechanisms in Arterial Hypertension

    Wenzel, U; Turner, JE; Krebs, C; Kurts, C; Harrison, DG; Ehmke, H

  • Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes

    Wettschureck, N; Rütten, H; Zywietz, A; Gehring, D; Wilkie, TM; Chen, J; Chien, KR; Offermanns, S

  • Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat

    Whaley-Connell, A; Govindarajan, G; Habibi, J; Hayden, MR; Cooper, SA; Wei, Y; Ma, L; Qazi, M; Link, D; Karuparthi, PR; Stump, C; Ferrario, C; Sowers, JR

  • Oxidative stress in the cardiorenal metabolic syndrome

    Whaley-Connell, A; Sowers, JR

  • A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

    Whorton, MR; Bokoch, MP; Rasmussen, SG; Huang, B; Zare, RN; Kobilka, B; Sunahara, RK

  • Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2

    Widder, JD; Fraccarollo, D; Galuppo, P; Hansen, JM; Jones, DP; Ertl, G; Bauersachs, J

  • Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy

    Wilkinson-Berka, JL; Rana, I; Armani, R; Agrotis, A

  • Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes

    Williams, SM; Golden-Mason, L; Ferguson, BS; Schuetze, KB; Cavasin, MA; Demos-Davies, K; Yeager, ME; Stenmark, KR; McKinsey, TA

  • Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence

    Willis, LM; El-Remessy, AB; Somanath, PR; Deremer, DL; fa*gan, SC

  • Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression

    Wincewicz, D; Juchniewicz, A; Waszkiewicz, N; Braszko, JJ

  • G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension

    Wirth, A; Benyó, Z; Lukasova, M; Leutgeb, B; Wettschureck, N; Gorbey, S; Orsy, P; Horváth, B; Maser-Gluth, C; Greiner, E; Lemmer, B; Schütz, G; Gutkind, JS; Offermanns, S

  • The renin-angiotensin system and experimental heart failure

    Wollert, KC; Drexler, H

  • Sirtuin activators mimic caloric restriction and delay ageing in metazoans

    Wood, JG; Rogina, B; Lavu, S; Howitz, K; Helfand, SL; Tatar, M; Sinclair, D

  • The brain RAS and Alzheimer’s disease

    Wright, JW; Harding, JW

  • The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases

    Wright, JW; Harding, JW

  • Adipocyte (Pro)Renin-Receptor Deficiency Induces Lipodystrophy, Liver Steatosis and Increases Blood Pressure in Male Mice

    Wu, CH; Mohammadmoradi, S; Thompson, J; Su, W; Gong, M; Nguyen, G; Yiannikouris, F

  • NLRP3 (Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3)-Caspase-1 Inflammasome Degrades Contractile Proteins: Implications for Aortic Biomechanical Dysfunction and Aneurysm and Dissection Formation

    Wu, D; Ren, P; Zheng, Y; Zhang, L; Xu, G; Xie, W; Lloyd, EE; Zhang, S; Zhang, Q; Curci, JA; Coselli, JS; Milewicz, DM; Shen, YH; LeMaire, SA

  • Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension

    Wu, H; Chen, L; Xie, J; Li, R; Li, GN; Chen, QH; Zhang, XL; Kang, LN; Xu, B

  • Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension

    Wu, J; Montaniel, KR; Saleh, MA; Xiao, L; Chen, W; Owens, GK; Humphrey, JD; Majesky, MW; Paik, DT; Hatzopoulos, AK; Madhur, MS; Harrison, DG

  • Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase

    Wu, J; Thabet, SR; Kirabo, A; Trott, DW; Saleh, MA; Xiao, L; Madhur, MS; Chen, W; Harrison, DG

  • S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-Induced cardiac inflammation and injury

    Wu, Y; Li, Y; Zhang, C; A, X; Wang, Y; Cui, W; Li, H; Du, J

  • Vascular Smooth Muscle Cell Signaling Mechanisms for Contraction to Angiotensin II and Endothelin-1

    Wynne, BM; Chiao, CW; Webb, RC

  • Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane

    Wyse, BD; Prior, IA; Qian, H; Morrow, IC; Nixon, S; Muncke, C; Kurzchalia, TV; Thomas, WG; Parton, RG; Hanco*ck, JF

  • Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis

    Wysocki, J; Ye, M; Batlle, D

  • Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice

    Xanthoulea, S; Thelen, M; Pöttgens, C; Gijbels, MJ; Lutgens, E; de Winther, MP

  • Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice

    Xia, H; Feng, Y; Obr, TD; Hickman, PJ; Lazartigues, E

  • Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension

    Xia, H; Sriramula, S; Chhabra, KH; Lazartigues, E

  • Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond

    Xia, Y; Kellems, RE

  • Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR)

    Xiao, K; Sun, J; Kim, J; Rajagopal, S; Zhai, B; Villén, J; Haas, W; Kovacs, JJ; Shukla, AK; Hara, MR; Hernandez, M; Lachmann, A; Zhao, S; Lin, Y; Cheng, Y; Mizuno, K; Ma’ayan, A; Gygi, SP; Lefkowitz, RJ

  • Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II-Induced Hypertension

    Xiao, L; Kirabo, A; Wu, J; Saleh, MA; Zhu, L; Wang, F; Takahashi, T; Loperena, R; Foss, JD; Mernaugh, RL; Chen, W; Roberts, J; Osborn, JW; Itani, HA; Harrison, DG

  • Modulation of angiotensin II-induced inflammatory cytokines by the Epac1-Rap1A-NHE3 pathway: implications in renal tubular pathobiology

    Xie, P; Joladarashi, D; Dudeja, P; Sun, L; Kanwar, YS

  • Peroxisome proliferator-activated receptor γ coactivator-1α is a central negative regulator of vascular senescence

    Xiong, S; Salazar, G; Patrushev, N; Ma, M; Forouzandeh, F; Hilenski, L; Alexander, RW

  • PGC-1 alpha serine 570 phosphorylation and GCN5-mediated acetylation by angiotensin II drive catalase down-regulation and vascular hypertrophy

    Xiong, S; Salazar, G; San Martin, A; Ahmad, M; Patrushev, N; Hilenski, L; Nazarewicz, RR; Ma, M; Ushio-f*ckai, M; Alexander, RW

  • Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism

    Xu, D; Borges, GR; Davis, DR; Agassandian, K; Sequeira Lopez, ML; Gomez, RA; Cassell, MD; Grobe, JL; Sigmund, CD

  • CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis

    Xu, J; Lin, SC; Chen, J; Miao, Y; Taffet, GE; Entman, ML; Wang, Y

  • Clinical Relevance and Role of Neuronal AT1 Receptors in ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension

    Xu, J; Sriramula, S; Xia, H; Moreno-Walton, L; Culicchia, F; Domenig, O; Poglitsch, M; Lazartigues, E

  • Effects of cardiac overexpression of the angiotensin II type 2 receptor on remodeling and dysfunction in mice post-myocardial infarction

    Xu, J; Sun, Y; Carretero, OA; Zhu, L; Harding, P; Shesely, EG; Dai, X; Rhaleb, NE; Peterson, E; Yang, XP

  • The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure

    Xu, Q; Jensen, DD; Peng, H; Feng, Y

  • IκBβ attenuates angiotensin II-induced cardiovascular inflammation and fibrosis in mice

    Xu, S; Zhi, H; Hou, X; Cohen, RA; Jiang, B

  • Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy

    Xu, X; Ha, CH; Wong, C; Wang, W; Hausser, A; Pfizenmaier, K; Olson, EN; McKinsey, TA; Jin, ZG

  • Inhibition or deletion of angiotensin II type 1 receptor suppresses elastase-induced experimental abdominal aorticaneurysms

    Xuan, H; Xu, B; Wang, W; Tanaka, H; Fujimura, N; Miyata, M; Michie, SA; Dalman, RL

  • Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression

    Yabumoto, C; Akazawa, H; Yamamoto, R; Yano, M; Kudo-Sakamoto, Y; Sumida, T; Kamo, T; Yagi, H; Shimizu, Y; Saga-Kamo, A; Naito, AT; Oka, T; Lee, JK; Suzuki, J; Sakata, Y; Uejima, E; Komuro, I

  • Endothelial nitric oxide synthase-independent protective action of statin against angiotensin II-induced atrial remodeling via reduced oxidant injury

    Yagi, S; Akaike, M; Aihara, K; Ishikawa, K; Iwase, T; Ikeda, Y; Soeki, T; Yoshida, S; Sumitomo-Ueda, Y; Matsumoto, T; Sata, M

  • Oxidized LDL (oxLDL) activates the angiotensin II type 1 receptor by binding to the lectin-like oxLDL receptor

    Yamamoto, K; Kakino, A; Takesh*ta, H; Hayashi, N; Li, L; Nakano, A; Hanasaki-Yamamoto, H; Fujita, Y; Imaizumi, Y; Toyama-Yokoyama, S; Nakama, C; Kawai, T; Takeda, M; Hongyo, K; Oguro, R; Maekawa, Y; Itoh, N; Takami, Y; Onishi, M; Takeya, Y; Sugimoto, K; Kamide, K; Nakagami, H; Ohishi, M; Kurtz, TW; Sawamura, T; Rakugi, H

  • Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice

    Yamashiro, Y; Papke, CL; Kim, J; Ringuette, LJ; Zhang, QJ; Liu, ZP; Mirzaei, H; Wagenseil, JE; Davis, EC; Yanagisawa, H

  • miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8

    Yan, M; Chen, C; Gong, W; Yin, Z; Zhou, L; Chaugai, S; Wang, DW

  • Ventricular-specific expression of angiotensin II type 2 receptors causes dilated cardiomyopathy and heart failure in transgenic mice

    Yan, X; Price, RL; Nakayama, M; Ito, K; Schuldt, AJ; Manning, WJ; Sanbe, A; Borg, TK; Robbins, J; Lorell, BH

  • Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes

    Yan, X; Schuldt, AJ; Price, RL; Amende, I; Liu, FF; Okoshi, K; Ho, KK; Pope, AJ; Borg, TK; Lorell, BH; Morgan, JP

  • The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system

    Yang, G; Gray, TS; Sigmund, CD; Cassell, MD

  • Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex

    Yang, J; Feng, X; Zhou, Q; Cheng, W; Shang, C; Han, P; Lin, CH; Chen, HS; Quertermous, T; Chang, CP

  • Distinct MAPK pathways are involved in IL-23 production in dendritic cells cocultured with NK cells in the absence or presence of angiotensin II

    Yang, L; Du, C; Chen, T; Li, S; Nie, W; Zhu, W; Fan, F; Zhu, J; Yan, H

  • Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis

    Yang, M; Zheng, J; Miao, Y; Wang, Y; Cui, W; Guo, J; Qiu, S; Han, Y; Jia, L; Li, H; Cheng, J; Du, J

  • Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events

    Yang, P; Schmit, BM; Fu, C; DeSart, K; Oh, SP; Berceli, SA; Jiang, Z

  • Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications

    Yang, RZ; Lee, MJ; Hu, H; Pollin, TI; Ryan, AS; Nicklas, BJ; Snitker, S; Horenstein, RB; Hull, K; Goldberg, NH; Goldberg, AP; Shuldiner, AR; Fried, SK; Gong, DW

  • Gut dysbiosis is linked to hypertension

    Yang, T; Santisteban, MM; Rodriguez, V; Li, E; Ahmari, N; Carvajal, JM; Zadeh, M; Gong, M; Qi, Y; Zubcevic, J; Sahay, B; Pepine, CJ; Raizada, MK; Mohamadzadeh, M

  • Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7

    Yang, Y; Ago, T; Zhai, P; Abdellatif, M; Sadoshima, J

  • Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction

    Yang, Z; Bove, CM; French, BA; Epstein, FH; Berr, SS; DiMaria, JM; Gibson, JJ; Carey, RM; Kramer, CM

  • Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    Yasuno, S; Kuwahara, K; Kinosh*ta, H; Yamada, C; Nakagawa, Y; Usami, S; Kuwabara, Y; Ueshima, K; Harada, M; Nishikimi, T; Nakao, K

  • Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice

    Ye, J; Ji, Q; Liu, J; Liu, L; Huang, Y; Shi, Y; Shi, L; Wang, M; Liu, M; Feng, Y; Jiang, H; Xu, Y; Wang, Z; Song, J; Lin, Y; Wan, J

  • Knockdown of angiotensinogen by shRNA-mediated RNA interference inhibits human visceral preadipocytes differentiation

    Ye, ZW; Wu, XM; Zhang, LJ; Huang, ZL; Jiang, JG

  • Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice

    Yiannikouris, F; Gupte, M; Putnam, K; Thatcher, S; Charnigo, R; Rateri, DL; Daugherty, A; Cassis, LA

  • Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice

    Yiannikouris, F; Karounos, M; Charnigo, R; English, VL; Rateri, DL; Daugherty, A; Cassis, LA

  • Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice

    Yiannikouris, F; Wang, Y; Shoemaker, R; Larian, N; Thompson, J; English, VL; Charnigo, R; Su, W; Gong, M; Cassis, LA

  • Inhibitor κB kinase 2 is a myosin light chain kinase in vascular smooth muscle

    Ying, Z; do Carmo, JM; Xiang, L; da Silva, AA; Chen, M; Ryan, MJ; Ostrowski, M; Rajagopalan, S; Hall, JE

  • PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA

    Ying, Z; Giachini, FR; Tostes, RC; Webb, RC

  • Foxp3+ regulatory T cells play a protective role in angiotensin II-induced aortic aneurysm formation in mice

    Yodoi, K; Yamash*ta, T; Sasaki, N; Kasahara, K; Emoto, T; Matsumoto, T; Kita, T; Sasaki, Y; Mizoguchi, T; Sparwasser, T; Hirata, K

  • Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension

    Yogi, A; Mercure, C; Touyz, J; Callera, GE; Montezano, AC; Aranha, AB; Tostes, RC; Reudelhuber, T; Touyz, RM

  • An Intronic Enhancer Element Regulates Angiotensin II Type 2 Receptor Expression during Satellite Cell Differentiation, and Its Activity Is Suppressed in Congestive Heart Failure

    Yoshida, T; Delafontaine, P

  • Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration

    Yoshida, T; Galvez, S; Tiwari, S; Rezk, BM; Semprun-Prieto, L; Higashi, Y; Sukhanov, S; Yablonka-Reuveni, Z; Delafontaine, P

  • Angiotensin type 2 receptor signaling in satellite cells potentiates skeletal muscle regeneration

    Yoshida, T; Huq, TS; Delafontaine, P

  • IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression

    Yoshida, T; Semprun-Prieto, L; Sukhanov, S; Delafontaine, P

  • Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    Yoshida, T; Tabony, AM; Galvez, S; Mitch, WE; Higashi, Y; Sukhanov, S; Delafontaine, P

  • High blood pressure reduction reverses angiotensin II type 2 receptor-mediated vasoconstriction into vasodilation in spontaneously hypertensive rats

    You, D; Loufrani, L; Baron, C; Levy, BI; Widdop, RE; Henrion, D

  • Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase

    Youn, J-Y; Zhang, J; Zhang, Y; Chen, H; Liu, D; Ping, P; Weiss, JN; Cai, H

  • ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension

    Young, CN; Cao, X; Guruju, MR; Pierce, JP; Morgan, DA; Wang, G; Iadecola, C; Mark, AL; Davisson, RL

  • Angiotensin-II, the Brain, and Hypertension: An Update

    Young, CN; Davisson, RL

  • Endoplasmic reticulum and oxidant stress mediate nuclear factor-κB activation in the subfornical organ during angiotensin II hypertension

    Young, CN; Li, A; Dong, FN; Horwath, JA; Clark, CG; Davisson, RL

  • Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis

    Young, CN; Morgan, DA; Butler, SD; Rahmouni, K; Gurley, SB; Coffman, TM; Mark, AL; Davisson, RL

  • Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy

    Yu, H; Guo, Y; Mi, L; Wang, X; Li, L; Gao, W

  • Mitochondrial KATP channel involvement in angiotensin II-induced autophagy in vascular smooth muscle cells

    Yu, KY; Wang, YP; Wang, LH; Jian, Y; Zhao, XD; Chen, JW; Murao, K; Zhu, W; Dong, L; Wang, GQ; Zhang, GX

  • Histone Methyltransferase SET1 Mediates Angiotensin II-Induced Endothelin-1 Transcription and Cardiac Hypertrophy in Mice

    Yu, L; Yang, G; Weng, X; Liang, P; Li, L; Li, J; Fan, Z; Tian, W; Wu, X; Xu, H; Fang, M; Ji, Y; Li, Y; Chen, Q; Xu, Y

  • Activation of central PPAR-γ attenuates angiotensin II-induced hypertension

    Yu, Y; Xue, BJ; Wei, SG; Zhang, ZH; Beltz, TG; Guo, F; Johnson, AK; Felder, RB

  • Cardiac hypertrophy is positively regulated by long non-coding RNA PVT1

    Yu, Y-H; Hu, Z-Y; Li, M-H; Li, B; Wang, Z-M; Chen, S-L

  • Mnk1 (Mitogen-Activated Protein Kinase-Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice

    Yuan, Y; Yan, L; Wu, QQ; Zhou, H; Jin, YG; Bian, ZY; Deng, W; Yang, Z; Shen, DF; Zeng, XF; Wang, SS; Li, H; Tang, QZ

  • Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy

    Yue, H; Li, W; Desnoyer, R; Karnik, SS

  • Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels

    Yue, P; Sun, P; Lin, DH; Pan, C; Xing, W; Wang, W

  • Angiotensin III: a physiological relevant peptide of the renin angiotensin system

    Yugandhar, VG; Clark, MA

  • Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance

    Yvan-Charvet, L; Even, P; Bloch-Faure, M; Guerre-Millo, M; Moustaid-Moussa, N; Ferre, P; Quignard-Boulange, A

  • Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase

    Zahradka, P; Litchie, B; Storie, B; Helwer, G

  • IGF-1 receptor transactivation mediates Src-dependent cortactin phosphorylation in response to angiotensin II

    Zahradka, P; Storie, B; Wright, B

  • Direct activation of ENaC by angiotensin II: recent advances and new insights

    Zaika, O; Mamenko, M; Staruschenko, A; Pochynyuk, O

  • Role of miR-195 in aortic aneurysmal disease

    Zampetaki, A; Attia, R; Mayr, U; Gomes, RS; Phinikaridou, A; Yin, X; Langley, SR; Willeit, P; Lu, R; Fanshawe, B; Fava, M; Barallobre-Barreiro, J; Molenaar, C; So, PW; Abbas, A; Jahangiri, M; Waltham, M; Botnar, R; Smith, A; Mayr, M

  • Altered AT1 receptor regulation of ETB receptors in renal proximal tubule cells of spontaneously hypertensive rats

    Zeng, C; Hopfer, U; Asico, LD; Eisner, GM; Felder, RA; Jose, PA

  • Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats

    Zeng, C; Luo, Y; Asico, LD; Hopfer, U; Eisner, GM; Felder, RA; Jose, PA

  • Upregulation of Nox4 promotes angiotensin II-induced epidermal growth factor receptor activation and subsequent cardiac hypertrophy by increasing ADAM17 expression

    Zeng, SY; Chen, X; Chen, SR; Li, Q; Wang, YH; Zou, J; Cao, WW; Luo, JN; Gao, H; Liu, PQ

  • Kelch-Like Protein 2 Mediates Angiotensin II-With No Lysine 3 Signaling in the Regulation of Vascular Tonus

    Zeniya, M; Morimoto, N; Takahashi, D; Mori, Y; Mori, T; Ando, F; Araki, Y; Yoshizaki, Y; Inoue, Y; Isobe, K; Nomura, N; Oi, K; Nishida, H; Sasaki, S; Sohara, E; Rai, T; Uchida, S

  • Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II

    Zeniya, M; Sohara, E; Kita, S; Iwamoto, T; Susa, K; Mori, T; Oi, K; Chiga, M; Takahashi, D; Yang, SS; Lin, SH; Rai, T; Sasaki, S; Uchida, S

  • Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling

    Zhan, Y; Brown, C; Maynard, E; Anshelevich, A; Ni, W; Ho, IC; Oettgen, P

  • The counter-regulatory effects of ESE-1 during angiotensin II-mediated vascular inflammation and remodeling

    Zhan, Y; Yuan, L; Kondo, M; Oettgen, P

  • Store-Operated Ca2+ Entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts

    Zhang, B; Jiang, J; Yue, Z; Liu, S; Ma, Y; Yu, N; Gao, Y; Sun, S; Chen, S; Liu, P

  • Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling

    Zhang, C; Li, Y; Wang, C; Wu, Y; Cui, W; Miwa, T; Sato, S; Li, H; Song, WC; Du, J

  • Matricellular protein CCN3 mitigates abdominal aortic aneurysm

    Zhang, C; van der Voort, D; Shi, H; Zhang, R; Qing, Y; Hiraoka, S; Takemoto, M; Yokote, K; Moxon, JV; Norman, P; Rittié, L; Kuivaniemi, H; Atkins, GB; Gerson, SL; Shi, GP; Golledge, J; Dong, N; Perbal, B; Prosdocimo, DA; Lin, Z

  • Structural basis for selectivity and diversity in angiotensin II receptors

    Zhang, H; Han, GW; Batyuk, A; Ishchenko, A; White, KL; Patel, N; Sadybekov, A; Zamlynny, B; Rudd, MT; Hollenstein, K; Tolstikova, A; White, TA; Hunter, MS; Weierstall, U; Liu, W; Babaoglu, K; Moore, EL; Katz, RD; Shipman, JM; Garcia-Calvo, M; Sharma, S; Sheth, P; Soisson, SM; Stevens, RC; Katritch, V; Cherezov, V

  • Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor

    Zhang, H; Unal, H; Desnoyer, R; Han, GW; Patel, N; Katritch, V; Karnik, SS; Cherezov, V; Stevens, RC

  • Structure of the Angiotensin receptor revealed by serial femtosecond crystallography

    Zhang, H; Unal, H; Gati, C; Han, GW; Liu, W; Zatsepin, NA; James, D; Wang, D; Nelson, G; Weierstall, U; Sawaya, MR; Xu, Q; Messerschmidt, M; Williams, GJ; Boutet, S; Yefanov, OM; White, TA; Wang, C; Ishchenko, A; Tirupula, KC; Desnoyer, R; Coe, J; Conrad, CE; Fromme, P; Stevens, RC; Katritch, V; Karnik, SS; Cherezov, V

  • Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor-β signalling

    Zhang, H; Wu, J; Dong, H; Khan, SA; Chu, ML; Tsuda, T

  • Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension

    Zhang, J; Patel, MB; Griffiths, R; Mao, A; Song, YS; Karlovich, NS; Sparks, MA; Jin, H; Wu, M; Lin, EE; Crowley, SD

  • Interleukin-1 Receptor Activation Potentiates Salt Reabsorption in Angiotensin II-Induced Hypertension via the NKCC2 Co-transporter in the Nephron

    Zhang, J; Rudemiller, NP; Patel, MB; Karlovich, NS; Wu, M; McDonough, AA; Griffiths, R; Sparks, MA; Jeffs, AD; Crowley, SD

  • Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis

    Zhang, JD; Patel, MB; Griffiths, R; Dolber, PC; Ruiz, P; Sparks, MA; Stegbauer, J; Jin, H; Gomez, JA; Buckley, AF; Lefler, WS; Chen, D; Crowley, SD

  • A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension

    Zhang, JD; Patel, MB; Song, YS; Griffiths, R; Burchette, J; Ruiz, P; Sparks, MA; Yan, M; Howell, DN; Gomez, JA; Spurney, RF; Coffman, TM; Crowley, SD

  • Dual pathways for nuclear factor kappaB activation by angiotensin II in vascular smooth muscle: phosphorylation of p65 by IkappaB kinase and ribosomal kinase

    Zhang, L; Cheng, J; Ma, Y; Thomas, W; Zhang, J; Du, J

  • Csk regulates angiotensin II-induced podocyte apoptosis

    Zhang, L; Ren, Z; Yang, Q; Ding, G

  • Contractile Function During Angiotensin-II Activation: Increased Nox2 Activity Modulates Cardiac Calcium Handling via Phospholamban Phosphorylation

    Zhang, M; Prosser, BL; Bamboye, MA; Gondim, ANS; Santos, CX; Martin, D; Ghigo, A; Perino, A; Brewer, AC; Ward, CW; Hirsch, E; Lederer, WJ; Shah, AM

  • Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A)) receptor

    Zhang, R; Liu, Z; Qu, Y; Xu, Y; Yang, Q

  • Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension

    Zhang, X; Li, ZL; Crane, JA; Jordan, KL; Pawar, AS; Textor, SC; Lerman, A; Lerman, LO

  • Pentoxifylline Ameliorates Cardiac Fibrosis, Pathological Hypertrophy, and Cardiac Dysfunction in Angiotensin II-induced Hypertensive Rats

    Zhang, X; Meng, F; Song, J; Zhang, L; Wang, J; Li, D; Li, L; Dong, P; Yang, B; Chen, Y

  • The angiotensin II type 1 receptor C-terminal Lys residues interact with tubulin and modulate receptor export trafficking

    Zhang, X; Wang, H; Duvernay, MT; Zhu, S; Wu, G

  • miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling

    Zhang, Y; Huang, XR; Wei, LH; Chung, AC; Yu, CM; Lan, HY

  • Activating transcription factor 3 SUMOylation is involved in angiotensin II-induced endothelial cell inflammation and dysfunction

    Zhang, ZB; Ruan, CC; Chen, DR; Zhang, K; Yan, C; Gao, PJ

  • Cardiac protective effects of irbesartan via the PPAR-gamma signaling pathway in angiotensin-converting enzyme 2-deficient mice

    Zhang, ZZ; Shang, QH; Jin, HY; Song, B; Oudit, GY; Lu, L; Zhou, T; Xu, YL; Gao, PJ; Zhu, DL; Penninger, JM; Zhong, JC

  • MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells

    Zhao, N; Koenig, SN; Trask, AJ; Lin, CH; Hans, CP; Garg, V; Lilly, B

  • Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling

    Zhao, Q; Ishibashi, M; Hiasa, K; Tan, C; Takesh*ta, A; Egashira, K

  • NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways

    Zhao, QD; Viswanadhapalli, S; Williams, P; Shi, Q; Tan, C; Yi, X; Bhandari, B; Abboud, HE

  • Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II

    Zhao, W; Li, Y; Jia, L; Pan, L; Li, H; Du, J

  • ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction

    Zhao, YX; Yin, HQ; Yu, QT; Qiao, Y; Dai, HY; Zhang, MX; Zhang, L; Liu, YF; Wang, LC; Liu, DS; Deng, BP; Zhang, YH; Pan, CM; Song, HD; Qu, X; Jiang, H; Liu, CX; Lu, XT; Liu, B; Gao, F; Dong, B

  • Notch γ-secretase inhibitor dibenzazepine attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE knockout mice by multiple mechanisms

    Zheng, YH; Li, FD; Tian, C; Ren, HL; Du, J; Li, HH

  • Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction

    Zhong, J; Basu, R; Guo, D; Chow, FL; Byrns, S; Schuster, M; Loibner, H; Wang, XH; Penninger, JM; Kassiri, Z; Oudit, GY

  • Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling

    Zhou, L; Li, Y; Hao, S; Zhou, D; Tan, RJ; Nie, J; Hou, FF; Kahn, M; Liu, Y

  • Wnt/β-catenin signaling and renin-angiotensin system in chronic kidney disease

    Zhou, L; Liu, Y

  • Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease

    Zhou, MS; Schulman, IH; Zeng, Q

  • Crucial Role of ROCK2-Mediated Phosphorylation and Upregulation of FHOD3 in the Pathogenesis of Angiotensin II-Induced Cardiac Hypertrophy

    Zhou, Q; Wei, SS; Wang, H; Wang, Q; Li, W; Li, G; Hou, JW; Chen, XM; Chen, J; Xu, WP; Li, YG; Wang, YP

  • Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration

    Zhu, N; Zhang, D; Chen, S; Liu, X; Lin, L; Huang, X; Guo, Z; Liu, J; Wang, Y; Yuan, W; Qin, Y

  • Silencing of hypoxia-inducible factor-1α gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats

    Zhu, Q; Wang, Z; Xia, M; Li, PL; Van Tassell, BW; Abbate, A; Dhaduk, R; Li, N

  • A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling

    Zhu, S; Zhang, M; Davis, JE; Wu, WH; Surrao, K; Wang, H; Wu, G

  • Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome

    Zilberberg, L; Phoon, CK; Robertson, I; Dabovic, B; Ramirez, F; Rifkin, DB

  • New insights into the structure and function of fatty acid-binding proteins

    Zimmerman, AW; Veerkamp, JH

  • Thirst neurons anticipate the homeostatic consequences of eating and drinking

    Zimmerman, CA; Lin, YC; Leib, DE; Guo, L; Huey, EL; Daly, GE; Chen, Y; Knight, ZA

  • Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma

    Zorad, S; Dou, JT; Benicky, J; Hutanu, D; Tybitanclova, K; Zhou, J; Saavedra, JM

  • Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats

    Zou, LX; Imig, JD; von Thun, AM; Hymel, A; Ono, H; Navar, LG

  • hom*ocysteine enhances cell proliferation in vascular smooth muscle cells: role of p38 MAPK and p47phox

    Zou, T; Yang, W; Hou, Z; Yang, J

  • Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues

    Zouein, FA; Altara, R; Chen, Q; Lesnefsky, EJ; Kurdi, M; Booz, GW

  • Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation

    Zouein, FA; Zgheib, C; Hamza, S; Fuseler, JW; Hall, JE; Soljancic, A; Lopez-Ruiz, A; Kurdi, M; Booz, GW

  • The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure

    Zucker, IH; Xiao, L; Haack, KK

Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology, Physiological Reviews | DeepDyve (2024)

References

Top Articles
Latest Posts
Article information

Author: The Hon. Margery Christiansen

Last Updated:

Views: 5867

Rating: 5 / 5 (50 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: The Hon. Margery Christiansen

Birthday: 2000-07-07

Address: 5050 Breitenberg Knoll, New Robert, MI 45409

Phone: +2556892639372

Job: Investor Mining Engineer

Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding

Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.